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A graphene nanoribbon with zigzag edges has a gapped magnetic ground state with an antiferromag-

netic interedge superexchange interaction. We present a theory based on asymptotic properties of the

Dirac-model ribbon wave function which predicts W�2 and W�1 ribbon-width dependencies for the

superexchange interaction strength and the charge gap, respectively. We find that, unlike the case of

conventional atomic-scale superexchange, opposite spin orientations on opposite edges of the ribbon are

favored by both kinetic and interaction energies.
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Introduction.—Motivated by the seminal theoretical
work of Kobayashi, Fujita, Nakada, Wakabayashi, and
collaborators [1–4], and by progress in graphene prepara-
tion [5], researchers have recently [6–16] reexamined the
intriguing physics of edge magnetism in zigzag terminated
graphene nanoribbons from a number of different points of
view. The magnetic state is a consequence of the nearly flat
subbands which occur at the Fermi level in a neutral zigzag
ribbon, and of the orbital character of the wave functions
associated with these bands. There is still no conclusive
[17] experimental evidence that a 1D magnetic state occurs
in ideal zigzag ribbons, but the theoretically predicted state
seems likely given that quite different electronic structure
theories [from crude Hubbard models to elaborate ab initio
density-functional-theory calculations] yield consistent
[13] predictions and that there are at present no other ideas
on how the unusual flat bands could be accommodated in
the many-electron state. Present ribbons are far from ideal,
however, and the main obstacle to realizing this paradig-
matic example of d0 magnetism [18,19] may lie in further-
ing recent progress [20–22] toward chemistry and defect
control at the edge.

Mean-field-theory calculations predict that the ground
state of a zigzag ribbon has unusually stiff parallel spin
alignment along each edge [12] and antiferromagnetic [14]
interedge superexchange interactions. In this Letter we
present a mostly analytic theory of the ribbon-width W
dependence of the important interedge superexchange in-
teraction. Our theory relies on the properties of large W
solutions of the continuum model approximation [6] for
zigzag edges. We predict that interedge interactions can
have a substantial influence on the properties of these
unusual 1D magnets.

Ribbon edge-state bands.—The �-orbital tight-binding
model for a finite width ribbon yields a number of 1D
Bloch bands proportional to the ribbon width [15]. To a
high degree of accuracy, zigzag magnetism is a rearrange-
ment of only [13] the highest occupied (jk�i) and lowest
unoccupied (jkþi) ribbon bands, whose transverse wave

functions are, respectively, odd and even functions of
carbon atom sites across the ribbon. Since the exchange
physics which favors magnetism is local, it is revealed
most clearly by forming states in this Hilbert space which
are localized as far as possible at one edge or the other,
jkL=Ri ¼ 1ffiffi

2
p ðjk�i � jkþiÞ, where we have chosen the

band transverse wave function amplitudes to be positive
at the leftmost atom. These left (L) right (R) basis states
can be expanded in terms of amplitudes on atoms in the
ribbon unit cell: jkLi ¼ LkljkliB, jkRi ¼ RkljkliB with
sums over sites l within the unit cell implied. It is readily
verified that Lkl and Rk0l0 are strictly localized on opposite
sublattices so that LklRk0l0 ¼ 0. In this representation, the
�-band tight-binding model Hamiltonian HTBðkÞ ¼ tðkÞ�x
where �x is a Pauli matrix and the left-right tunneling
amplitude tðkÞ ¼ �E�

TBðkÞ ¼ Eþ
TBðkÞ. The bands in the

Brillouin zone ��=a � k � �=a have periodicity 2�=a
and have inversion symmetry so we can restrict our atten-
tion to the interval 0 � k � �=a. Zigzag edge magnetism
follows from the following tight-binding model property

[6,15]. For 2�=3þ qea � jkj, where qe ¼ 1=W ¼
2=

ffiffiffi
3

p
aN, the states jkLi and jkRi are exponentially local-

ized near their respective edges and the left-right hopping
amplitude tðkÞ decreases rapidly with increasing W. (Here

a ¼ 2:46 �A is the lattice constant and N is the number of
atom pairs in the ribbon unit cell.) Over this region of wave
vector jkLi and jkRi are proper edge states.
Hubbard model mean-field theory.—In order to explain

our theory of the superexchange interaction we briefly
summarize the mean-field theory of the magnetic state,
which is particularly simple in the Hubbard model case.
It is instructive to contrast two different collinear magnetic
solutions of the mean-field equations, an antiferromagnetic
(AFM) one in which spins have opposite orientations on
opposite edges and a ferromagnetic (FM) one in which
spins have the same orientation on opposite edges. The two
LR basis spin-dependent mean-field Hamiltonians are
given (up to a common constant) by
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HAFM
� ¼ ���AFM t

t ��AFM

 !
;

HFM
� ¼ ���FM t

t ���FM

 !
;

(1)

where � ¼ þ=� for " = # spin, the k dependence of t and
the self-consistent exchange potentials is implicit, and

�AFMðkÞ¼U
X
l

L2
klhmliAFM; �FMðkÞ¼U

X
l

L2
klhmliFM:

(2)

In Eq. (2) ml ¼ ðnl" � nl#Þ=2 is the site-dependent spin

density and nl� is the spin-dependent mean occupation
number at site l. [Both solutions have nl � ðnl" þ nl#Þ �
1, a convenient property of neutral ribbons which can be
traced to particle-hole symmetry in the paramagnetic
bands.] These self-consistent solutions are illustrated for
a N ¼ 20 zigzag ribbon in Fig. 1. Both the FM (even ml)
and AFM (odd ml) state solutions are self-consistent. The
mean-field equations are closed by evaluating ml using

hmliAFM ¼ a

2�

Z �=a

0
dkðL2

kl � R2
klÞPðkÞ; (3)

hmliFM ¼ a

2�

Z �=a

kc

dkðR2
kl þ L2

klÞ; (4)

where the degree of LR polarization is

PðkÞ � �AFMðkÞ
f½�AFMðkÞ�2 þ tðkÞ2g1=2 (5)

In the AFM case, local spin polarization follows from the
opposite left-right polarizations of " and # states whereas in
the FM case the left-right polarization vanishes and spin
polarization follows from double occupation of " bands for
kc < jkj<�=a where kc is the wave vector at which the
";þ band and the #;� band cross as illustrated in Fig. 1.
�AFM and �FM are nearly (but not quite) identical because
their ml’s differ mostly in the middle of the ribbon which
has little influence on the edge states.

Ribbon-width scaling rules.—From solutions of the gra-
phene continuum model [6,15] we obtain for the region
near k ¼ �ð2�=3þ qÞ and small q the expression

t½�ðqþ 2�=3Þ� ¼ ð ffiffiffi
3

p
�0a=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � z2

q
; (6)

where z satisfies, respectively, for q > qe and q < qe,

zW cothðzWÞ ¼ qW; zW= tanðWzÞ ¼ qW: (7)

In the continuum model we have for kc < k < �=a

R2
kl!R2

kðyÞ¼2z½coshð2zyÞ�1�=½sinhð2WzÞ�2Wz�;
(8)

and for 0< k < kc

R2
kðyÞ ¼ 4z sinðzyÞ=½2Wz� sinð2WzÞ�: (9)

The left centered functions can be obtained through the
symmetry relation Lkl ¼ Rk2N�l. It follows that

tðkÞ ¼ �0

W
~tðqWÞ; RkðyÞ2 ¼ W�1�2ðqW; y=WÞ; (10)

where the functions �2ðxÞ and ~tðxÞ are implicitly defined by
the above equations. We have verified that these scaling
relations apply accurately even in quite narrow ribbons.
From Eq. (2) we see that the Hubbard model exchange

potentials depend on local spin polarizations hmli which
are large only close to the edge and approach a well-
defined limit already for quite narrow ribbons; the form
of the spin polarization near each edge is a single-edge
property unrelated to interedge interactions. From this
observation and the above scaling relations for the zigzag
edge states, we propose the following scaling rule for the
form of the exchange potential:

�AFM=FMðkÞ ¼ W�1 ~�AFM=FMðqWÞ: (11)

Since both ~�ðkÞ and ~tðkÞ depend only on qW, it follows
from Eq. (5) that PðkÞ also depends only on qW. We have
verified numerically that this relationship holds accurately
for sufficiently wide ribbons as illustrated in Fig. 2.
Interedge interaction.—The strength of the superex-

change interaction which determines the alignment be-
tween magnetization directions on opposite edges is
given by the total energy difference between AFM and
FM solutions. Because the electrostatic Hartree energies of
both states are identical, the energy difference per edge
carbon atom �E can be separated into band (kinetic) and
exchange energy contributions; see Fig. 3:

�E ¼ EFM � EAFM ¼ �T þ �EX: (12)

The difference of kinetic energies between AFM and FM
solutions is determined by

AFM

AFM

AFM

FM

FM

FM

FM

FIG. 1 (color online). Hubbard model mean-field calculations
for �0 ¼ 2:6 eV and U ¼ 2 eV for a zigzag ribbon with N ¼
20. Left: Mean-field energy bands for the AFM state: EAFMðkÞ ¼
�½�AFMðkÞ2 þ t2ðkÞ�1=2 for both spins with the low-energy states
of one spin concentrated on one side of the ribbon and the low-
energy states of the opposite spin concentrated on the opposite
side. tðkÞ, the left-right hopping parameter, is quite insignificant
for this ribbon width in the edge-state region. �AFMðkÞ is
dominant in the edge-state region because of large local spin
polarizations. Right: Mean-field energy bands for the FM state:
EFM
� ðkÞ ¼ ��FMðkÞ � jtðkÞj. Note that �AFM and �FM are nearly

identical. The bands are periodic with periodicity 2�=a and
inversion symmetric.
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TAFM¼�2a

�

Z �=a

0
dktðkÞTðkÞ; TFM¼�2a

�

Z kc

0
dktðkÞ;

(13)

where TðkÞ ¼ ½1� P2ðkÞ�1=2 is the symmetric-
antisymmetric polarization of AFM states. The FM as
well as noninteracting band eigenstates have TðkÞ � 1. In
the noninteracting ground state the lower energy state is
fully occupied and the total energy contains all the band
energy. Both AFM and FM states sacrifice band energy
contributions in the region jkj * 2�=3a in order to gain
interaction energy. In the ferromagnetic case the band
energy gain is sacrificed completely for jkj> kc, the
wave vector at which � ¼ t. At larger values of jkj both
bonding and antibonding states are occupied for one spin
and both are empty for the other spin. There is therefore an
abrupt separation at jkj ¼ kc between wave vectors which
contribute to band energy and regions which contribute to
the exchange energy, discussed below. In the AFM case, on
the other hand, T crosses smoothly as a function of scaled
wave vector ~q ¼ qW from the kinetic energy contributing
regime at small jkj to the exchange energy contributing
regime at large jkj. Using the scaling properties of t and �
the kinetic energy contribution to the difference can be
written as an integral over ~q:

�T ¼ 2a�0

�W2

�Z ~qc

�1
d~q~tð~qÞ½ ~Tð~qÞ � 1� þ

Z 1

~qc

d~q~tð~qÞ ~Tð~qÞ
�
:

(14)

The integrals in Eq. (14) converge at �1 because ~Tð~qÞ
approaches 1 rapidly and at 1 because ~Tð~qÞ approaches 0
rapidly. The contribution from ~q < ~qc is negative while the
contribution from ~q > ~qc is positive. Substantial cancella-
tion leads to a small kinetic energy contribution to �E.

The exchange energy integrands satisfy the scaling re-
lations similar to the kinetic terms and we can write the
exchange energy difference as

�EX¼ a

�W2

�Z ~qc

�1
d~q~�AFMð~qÞ ~Pð~qÞþ

Z 1

~qc

d~q~�AFMð~qÞ

�½ ~Pð~qÞ�1�
�
þ1

3
½�AFMð�=aÞ��FMð�=aÞ�: (15)

The first two terms are similar to the corresponding band
energy contributions, with the discontinuity at qc again due
to the band crossing in the ferromagnetic state. We write
this contribution to the superexchange interaction as
JX=W

2. An additional contribution appears because
�AFM and �FM are not quite identical for ~q ! 1.
In the Hubbard model we can relate the asymptotic

difference in � to the difference in spin polarization
on the edge atom: �� � �AFMð�=aÞ � �FMð�=aÞ ¼
UðhmedgeiAFM � hmedgeiFMÞ. Labeling the leftmost site as

site 1, noting that R2
k1 ¼ 0, and recalling the definitions of

hmli in Eqs. (3) and (4), we find that

�� ¼ a

2�

Z kc

0
dkL2

k1PðkÞ þ
a

2�

Z �=a

kc

dkL2
k1½1� PðkÞ�

� 3J�m
W2

: (16)

AFM

AFM

FIG. 2 (color online). Left: Dependence of ~�AFM and �0~t on
the scaled coordinate ~q ¼ qW and the corresponding N ¼ 60
AFM state quasiparticle bands. Note that the self-consistently
calculated ~�AFM approaches a well-defined function at large N.
The positions kc and k

� are, respectively, the values of k at which
�AFM ¼ t and the band gap minimum occurs. Right: Scaling
collapse of antiferromagnetic state self-consistent left-right po-
larization ~P and symmetric-antisymmetric polarization ~T repre-
sented in the scaled coordinate ~q. Note that P2 þ T2 ¼ 1 by
definition.

AFM

FM

AFM

AFM

FM

FIG. 3 (color online). k-resolved contributions to the kinetic
(~"T) (upper panel) and exchange (lower panel) energies (~"X) of
the FM and AFM states and the corresponding FM� AFM
differences as a function of the scaled momentum coordinate
~q ¼ qW. "FMT and "AFMT are the integrands in the kinetic energy

expression Eq. (13), and "FM=AFM
X is the corresponding quantity

for the exchange interaction energy. The discontinuities in the
ferromagnetic case are due to the crossing between the majority-
spin symmetric and minority-spin antisymmetric bands at kc,
indicated by a thin vertical line. Although the kinetic energies
roughly double the interaction energies at most k values, the
exchange contribution to superexchange is much larger because
of weaker cancellation between jkj< kc and jkj> kc regions.
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Adding the three contributions we obtain

�EðWÞ ¼ W�2ðJK þ JX þ J�mÞ: (17)

For �0 ¼ 2:6 eV and on site repulsion U ¼ 2:0 eV that
results in band gaps similar to local-density approximation
[13], we find that the kinetic and exchange contributions to

the interaction are JK ¼ 0:6 eV � �A2, and JX þ J�m ¼
2:1 eV � �A2. (See Fig. 4.) Separately J�m ’ 1:15 eV � �A2

implying that the interaction contribution is composed in
approximately equal measures of contributions from q near
qc and contributions far in the edge regime.

Conclusions and discussions.—Our analysis shows that
the antiferromagnetic interedge superexchange interaction
in magnetic zigzag nanoribbons is the sum of three con-
tributions (band energy, exchange energy, and edge spin
polarization), all of which arise from a region of the
ribbons’ 1D Brillouin zone which is centered on jkj ¼
2�=3a and scales in width as 1=W. Unlike the familiar
case of atomic-scale superexchange interactions, in which
antiferromagnetic spin arrangements lower the kinetic en-
ergy at a cost in interaction energy, all three contributions
have the same sign—with the kinetic contribution being
substantially smaller in magnitude. Our conclusions rest
primarily on analytic properties of continuum model solu-
tions to the �-band model for zigzag nanoribbons and
depend on the particle-hole symmetry of graphene’s con-
duction and valence bands. We have demonstrated numeri-

cally that the continuum model predictions are accurate,
even in narrow nanoribbons. Although some details of our
analysis depend on the simplified Hubbard model we use,
we expect the scaling properties of states near jkj ¼ 2�=3a
to be general and that our qualitative conclusions will
apply to any mean-field-theory treatment of zigzag ribbon
magnetism.
Collective spin behavior is expected [12] to be important

in zigzag ribbon magnets, even though they are one di-
mensional, because of the exceptionally strong exchange
interactions along each edge. Assuming that the magnetic
anisotropy (which is expected to be weak) is important
only at low temperatures, the correlation length � along
an isolated zigzag edge is estimated [12] to be

	3000 �A=T ½K�. Since the interedge interaction arises
from an interval of k space with width 1=W, its range
along the edge will be 	W. When � is smaller than W,
interedge interactions will have little influence. For �
larger thanW, the interedge interactions will help suppress
thermal magnetization fluctuations.
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FIG. 4 (color online). The difference between the FM and
AFM states in total energy (�E), exchange energy (�EX), and
kinetic energy (�T) plotted on a linear scale (left) and a
logarithmic scale (right). The total energy difference follows a
W�2 decay law at large W and is dominated by exchange energy
contribution. The kinetic energy contribution is substantially
smaller and the asymptotic decay law develops only for suffi-
ciently large ribbon width. The total energy �E was fitted with
2:7=ðW2 þ 280Þ, the exchange energy �EX with 2:1=ðW2 þ
100Þ, and the fitting for the kinetic contribution was obtained
from the difference between both resulting in 0:6=W2 (repre-
sented with�20 magnification), all terms given in eV �A�2 units.
12 K k points were sampled in the 1D Brillouin zone.
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