
Triangular and Kagome Antiferromagnets with a Strong Easy-Axis Anisotropy

Arnab Sen,1 Fa Wang,2 Kedar Damle,1 and R. Moessner3

1Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
2Department of Physics, University of California, Berkeley, California 64720, USA

3Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany
(Received 13 November 2008; published 2 June 2009)

We consider S > 3=2 kagome and triangular lattice magnets with strong easy-axis single-ion anisotropy

D and antiferromagnetic exchange J. When D � J, the low energy states selected by the anisotropy map

onto configurations of the corresponding classical Ising antiferromagnet. Subleading OðJ3S=D2Þ multi-

spin interaction arising from the transverse quantum dynamics makes the low-temperature behavior very

different from the well-known classical case: The kagome magnet goes into a semiclassical spin-liquid

state with distinctive and unusual short-range correlations below a crossover temperature T� �
0:08J3S=D2, while the triangular magnet undergoes a first-order transition at Tc � 0:1J3S=D2 to an

orientationally ordered collinear state that gives rise to a novel zero-magnetization plateau for small

magnetic fields along the easy axis. Possible experimental implications are also discussed.
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Introduction.—Well-formed magnetic moments
(‘‘spins’’) in insulators often display dominant short-range
exchange interactions [1], which result in sharply defined
transitions from high-temperature paramagnetic behavior
to low-temperature magnetic order, the nature of which can
usually be understood in terms of the unique minimum of
the classical exchange energy. However, in some cases, the
leading exchange interactions compete with each other due
to the geometry of the lattice. Such geometrically frus-
trated systems often have many local minima in their
classical energy landscape, or even a macroscopic number
of inequivalent classical ground states, resulting in a wide
crossover regime with cooperative paramagnetic behavior
at intermediate temperatures below the exchange energy
scale [2].

In most cases which display a cooperative paramag-
netic regime, quantum fluctuations and subleading inter-
actions eventually do lead to an (often complex) ordered
state at still lower temperature. Systems with spins on
the kagome lattice [Fig. 1(a)] provide many experi-
mental examples of this physics [3–5]. In other frus-
trated magnets, e.g., in the S ¼ 1=2 kagome lattice
magnet herbertsmithite [6], there is no tendency of the
spins to form an ordered arrangement even at the lowest
temperatures accessible to experiment. Such systems
provide possible realizations of so-called spin-liquid
states, which have been the subject of sustained theoretical
activity [7] going back to the work of Fazekas and
Anderson [8].

Even when the classical energetics does pick a unique
ground state spin configuration, this ordering can be par-
ticularly vulnerable to the effects of quantum fluctuations.
Triangular lattice [Fig. 1(b)] antiferromagnets with
nearest-neighbor Heisenberg exchange couplings, which
are isotropic in spin space, provide a well-known example,
with the classical coplanar 120� ordered state surviving the

effects of quantum fluctuations down to S ¼ 1=2, but with
a significantly reduced ordered moment [9].
Much of the theoretical work [7] has focused on the

challenging case of spin-1=2 moments with Heisenberg
exchange interactions. In the opposite Ising limit, in which
the exchange interactions only couple one component of
neighboring S ¼ 1=2 moments on the triangular or ka-
gome lattice, there are no quantum fluctuations. These
frustrated Ising models on the triangular and kagome lat-
tices have been of interest in statistical mechanics for over
half a century, and are known to have a macroscopic degen-
eracy of inequivalent classical ground states that results in
cooperative paramagnetic behavior all the way down to
T ¼ 0 [10] on both lattices—indeed, the cooperative para-
magnetic state of these Ising models provides the standard
paradigm for the effects of frustration at the classical level.
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FIG. 1 (color online). (a) The kagome lattice (with Lx ¼ 4,
Ly ¼ 3), and a macroscopic entropy ensemble of partially or-

dered states that simultaneously minimizes J1 and J2 on it.
(b) The triangular lattice (with Lx ¼ Ly ¼ 4) and its orienta-

tionally ordered state: The average Ising exchange energy of the
dark (blue) bonds is lower than that of the light (green) bonds.
(c) Mapping of Ising spins to dimers on the dual lattice.
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Motivation.—Such ‘‘Ising spins’’ can and do actually
arise in experiments when S � 1 moments have a strong
easy-axis single-ion anisotropy D in addition to the usual
isotropic exchange coupling J in their effective Hamil-
tonian. WhenD is large, each spin has projection�S along
its easy axis, thus mimicking a two-state Ising system with
interactions arising from ‘‘longitudinal’’ components of J
along the easy axis. However, such Ising spins are also
influenced by quantum fluctuations arising from the trans-
verse components of the exchange coupling. The question
then arises: Can these lead to low-temperature behavior
qualitatively different from the well-known cooperative
paramagnetic state of the corresponding classical Ising
model?

Results.—We provide a unified account of the low-
temperature properties of all such S > 3=2 triangular and
kagome magnets with a common easy axis z for all spins:

H ¼ J
X

hiji
~Si � ~Sj �D

X

i

ðSzi Þ2; (1)

and demonstrate that this question has interesting answers
[11]: We find that such easy-axis magnets on the kagome
lattice do not develop any long-range order down to very
low temperature, and are thus good examples of spin-liquid
behavior in a system of quantum spins. In the intermediate
temperature range T� < T 	 JS2 (where T� �
0:08J3S=D2 is a crossover temperature), the system is
well described by the classical cooperative Ising paramag-
net mentioned earlier. Below T�, virtual quantum fluctua-
tions dominate, leading to a qualitatively different
‘‘semiclassical’’ spin-liquid regime in which the structure
factor of the spins encodes distinctive short-ranged corre-
lations. In sharp contrast to this, triangular lattice magnets
undergo an abrupt first-order transition at Tc � 0:1J3S=D2

from the intermediate temperature classical cooperative
Ising paramagnet to an unusual orientationally ordered
collinear state which gives rise to a zero-magnetization
plateau over a range of small magnetic fields along the
easy axis.

Our kagome results are of experimental relevance for the
kagome antiferromagnet Nd-langasite that does not exhibit
any magnetic order down to 50 mK [12,13], although the
Nd3þ spins (that carry a total angular momentum quantum
number Jion ¼ 9=2) interact with nearest neighbors on the
kagome lattice with an isotropic antiferromagnetic ex-
change coupling J � 1:5 K in the presence of a strong
single-ion anisotropy term D � 10 K [14] that picks out
the crystallographic c axis as the common easy axis of all
the spins [15].

Effective Hamiltonian.—When D dominates over J, the
leading D term picks collinear spin states that can be
described by Ising pseudospin variables �: Szi ¼ �iS,
with �i ¼ �1. The low energy physics in this regime is
then best described in terms of an effective Hamiltonian
H that encodes the splitting of this degenerate Ising sub-
space; this physics is thus different from that of the inter-

mediate anisotropy regime, in which noncollinear con-
figurations dominate at low temperatures and fields, lead-
ing to a sequence of noncollinear phases [16,17].
To (leading) OðJ3=D2Þ, an elementary perturbative cal-

culation (similar to but simpler than degenerate perturba-
tion theory analyses of magnetization plateaus in finite
field [18,19]) gives the effective Hamiltonian

H ¼ J1
X

hiji
�i�j � J2

X

hiji

1� �i�j

2
ð�iHi þ �jHjÞ; (2)

where J1 ¼ JS2, J2 ¼ S3J3

4D2ð2S�1Þ2 , and the exchange field

Hi 

P

j�ij�j with �ij ¼ 1 for nearest neighbors and zero

otherwise. In the above, the first term corresponds to the
leading effect of the z component of the spin exchange,
while the second term arises from the effects of virtual
quantum transitions of pairs of antialigned spins out of the
low energy Ising subspace. An additional OðJ2S=D2S�1Þ
pseudospin exchange term (not displayed above), repre-
senting real quantum transitions, is subdominant for S >
3=2, making the physics of these high-spin magnets quite
different from the S ¼ 1 case where real quantum transi-
tions dominate, leading to spin-nematic order [20].
Classical Ising regime.—Below the exchange energy

scale J1, the system crosses over to an intermediate tem-
perature regime J2 	 T 	 J1 whose physics is controlled
by the ground states of the corresponding classical Ising
antiferromagnet. In these ground states each triangle has
exactly one frustrated bond (connecting a pair of aligned
spins). This ‘‘minimally frustrated’’ ensemble of states has
a residual entropy of 0:502kB (0:323kB) per spin in the
kagome (triangular) case [10]. This macroscopic entropy
ensemble of ground states can be conveniently represented
by dimer configurations on the dice (honeycomb) lattice
dual to the kagome (triangular) lattice, wherein a dimer
is placed on every link of the dual lattice that intersects
a frustrated bond of the original spin configuration
[Fig. 1(c)]. In the kagome case, spin correlations averaged
over this ground state ensemble are very short ranged [10],
yielding a completely featureless spin structure factor. On
the triangular lattice, spin correlations at the three-
sublattice wave vector build up at low temperature, but
there is no long-range order. This intermediate temperature
regime J2 	 T 	 J1 in both cases is thus a classical
cooperative Ising paramagnet.
T & J2.—Next, we note that the minimum frustration

condition immediately implies that
P

hijið�i�j � 1Þ�
ð�iHi þ �jHjÞ=2 ¼ P

ið�iHiÞ2=2 (apart from an additive

constant). This allows us to write the projected multispin
interaction J2 [Eq. (2)] as an interaction between dimers
[Fig. 1(c)]:

HD ¼ 2J2
X

P

n2jnPihnPj; (3)

where jnPi denotes elementary plaquettes with n dimers
on their perimeter. Somewhat remarkably, the form of this
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interaction remains the same for all S > 3=2, and all the S
dependence is in the prefactor J2ðSÞ.

This potential energy HD is minimized on the dice
lattice (dual to kagome lattice) when elementary plaquettes
with no dimers on their perimeter are disallowed. In spin
language, it implies that no spin should be the minority
spin of both the triangles to which it belongs. We have
investigated the set of configurations that satisfy this con-
straint in some detail, and find that it is possible to con-
struct a large subset of states (i.e., with macroscopic
entropy) satisfying the rule, and all related to each other
by local spin flips [Fig. 1(a)]. This construction immedi-
ately provides a lower bound of kB lnð2Þ=6 per site on the
entropy of the ground states of H D. On the honeycomb
lattice (dual to triangular lattice), HD is minimized by
dimer configurations in which all hexagons have precisely
two dimers on their perimeter. Detailed analysis reveals
that the ground state entropy in this case is subextensive
unlike in the kagome case. These bounds on the ground
state degeneracy leave open the possibility of low-
temperature entropic ordering within the ground state
manifold, and below we present results of detailed
Monte Carlo simulations of HD to shed light on this
possibility. (Our numerics relies on an efficient general-
ization of the loop algorithm of Refs. [21,22].)

Orientationally ordered state on triangular lattice.—We
find that below a critical temperature Tc � 1:67J2ðSÞ, the
system enters an orientationally ordered state in which the
mean Ising exchange energy on a link of the triangular
lattice depends only on its orientation.

This is seen [Fig. 2(a)] in the behavior of the orienta-

tional order parameter � ¼ P
p � Bpe

2p�i=3, where Bp

denotes the average of the Ising exchange energy �i�j

on all links hiji of the pth orientation (p ¼ 0; 1; 2) on the
triangular lattice [Fig. 1(b)]. From the double peak nature
of the histogram of the order parameter at the transition, we
see that the transition has a first-order character [Fig. 2(b)].
In such an orientationally ordered state, the Ising pseudo-
spins are antiferromagnetically arranged in parallel rows
oriented along one spontaneously chosen principal direc-
tion of the triangular lattice. Each such row can be in one of
two internal states corresponding to the two antiferromag-
netic arrangements of � on that row, and we probe possible
relative ordering of these internal states by monitoring the
structure factor of the Ising spins �. (Any long-range order
in these internal states would give rise to a Bragg peak in
this structure factor, while the absence of any observed
Bragg peaks would imply either a random glassy pattern of
internal states or rapidly fluctuating internal states.)

As is clear from Fig. 2(c), there is no long-range order in
the internal states of the antiferromagnetic rows. In fully
equilibrated simulations that employ efficient nonlocal
multispin updates, we find that the antiferromagnetic
rows fluctuate freely between their two allowed internal
states. With realistic single-spin flip or spin-exchange dy-
namics, we find that the antiferromagnetic rows freeze into

a random glassy pattern of internal states as we approach
Tc. (Similar glassy behavior due to formation of extended
structures has been discussed earlier [19,23].)
Another interesting aspect of this orientationally ordered

state follows from the exponential suppression

[Oðe�J2ðSÞ=TÞ] of the total easy-axis magnetization hMtoti
and the corresponding susceptibility � [Fig. 2(d)], since
perfect orientational order implies zero magnetization for
each individual antiferromagnetic row of spins, and defects
cost energy of order J2ðSÞ. As this ordered state is stable to
small magnetic fields at which the corresponding Zeeman
energy is small compared to the multispin interaction
energy J2, this implies the presence of a low-temperature
zero-magnetization plateau that extends for a range of
magnetic fields 0< jBj< Bc � J3=D2.
Semiclassical spin liquid on kagome lattice.—From nu-

merical simulations on Lx ¼ Ly ¼ L size systems using

this algorithm (with L ranging from 10 to 60), we see no
evidence at all of any phase transition as we lower the
temperature to access the T ! 0 limit. This is evident from
the behavior of the specific heat per site, which saturates
very quickly with system size, and does not show any
singularity in the thermodynamic limit [Fig. 3(a)]. In ad-
dition, the spin-spin correlators as well as the bond-energy
correlators show no long-range order at any wave vector
down to the lowest temperatures we study [Fig. 3(b)]. The
system thus remains in a short-ranged ordered spin-liquid
state down to the lowest temperatures, in sharp contrast to
the long-range order that is expected to develop at low
temperature in the presence of magnetic fields B� JS
along the easy axis [19].
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FIG. 2 (color online). (a) Temperature dependence of the
orientational order parameter �. (b) The double peak in the
histogram of� provides a clear signature of a first-order jump in
� at the transition. (c) Contour plot of the equal time spin
structure factor for size L ¼ 24 at 2�J2ðSÞ ¼ 2:2. The Bragg
lines with enhanced scattering are the signature of the orienta-
tional order. (d) The magnetic susceptibility behavior of a Ns 

L2 site system across the transition.
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Although there is no phase transition, the low-
temperature liquid is quite different from the classical
cooperative Ising paramagnet. This crossover to a distinct
semiclassical spin-liquid regime [Fig. 3(a)] is evident in
the temperature dependence of the specific heat per site
Cv=Ns, and the magnetization fluctuations T�. The Cv vs
T curve shows a distinct but nonsingular peak at T� �
1:3J2 that reflects the loss of entropy during this crossover
from the cooperative Ising paramagnet to the low-
temperature limit in which the configurations sampled
predominantly obey the minimum J2 constraint (the
Cv=T data give an estimate of 0:32kB per spin for the
residual entropy of the semiclassical spin liquid).

A clear signature of this crossover to the semiclassical
spin liquid below T� is provided by the spin structure factor
(probed in neutron scattering experiments): Sð ~qÞ ¼
jS0ð ~qÞ expðiqy=2Þ þ S1ð ~qÞ þ S2ð ~qÞ expðiqx=2Þj2, where

S�ð ~qÞ is the Fourier transform of the spin density on
sublattice � of the kagome lattice [Fig. 1(a)] and qx (qy)

refers to the projection of ~q onto lattice direction T0 (T1)
measured in units of inverse Bravais lattice spacing. Sð ~qÞ
evolves continuously from being quite featureless in the
classical cooperative Ising regime T� 	 T 	 J1 to devel-
oping characteristic crescents of high intensity diffuse
scattering in the low-temperature semiclassical spin-liquid
regime T 	 T�, with precursors of these features being
already present at T � 2T� [Figs. 3(c)–3(e)]. As qualitative
features, such crescents should be relatively robust to
smearing due to, e.g., crystal imperfections, providing an
experimental fingerprint of the semiclassical spin liquid
akin to the singular ‘‘pinch-point’’ signatures of the spin-
ice phase in Dy2Ti2O7 [24].

Using [14] J � 1:5 K and D � 10 K, we obtain T� �
16 mK, and we thus expect a simple classical Ising de-
scription of the spin structure factor to work fairly well at
T > 32 mK—this is consistent with the nearly featureless
diffuse scattering seen in neutron scattering experiments
above 50 mK [12,13]. We thus hope that our results might
motivate lower-T studies that probe the crossover to the
semiclassical spin-liquid state.
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FIG. 3 (color online). (a) Specific heat Cv and the uniform
susceptibility � in the crossover region to the semiclassical spin
liquid. (b) Sð ~qÞ along a qx ¼ qy cut for system sizes L ¼ 48; 60,

and inverse temperatures �J2 ¼ 0:0; 3:0. (c)–(e) Spin structure
factor Sð ~qÞ shown for three different temperatures, showing
crossover to semiclassical spin-liquid regime.
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