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We report on stochastic effects in a new class of semiconductor structures that accurately imitate the

electrical activity of biological neurons. In these devices, electrons and holes play the role of Kþ and Naþ

ions that give the action potentials in real neurons. The structure propagates and delays electrical pulses

via a web of spatially distributed transmission lines. We study the transmission of a periodic signal

through a noisy semiconductor neuron. Using experimental data and a theoretical model we demonstrate

that depending on the noise level and the amplitude of the useful signal, transmission is enhanced by a

variety of nonlinear phenomena, such as stochastic resonance, coherence resonance, and stochastic

synchronization.
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It remains a challenging task to create an artificial
structure [1,2] which would reproduce the essential
properties of real neurons and, in particular, the spatiotem-
poral charge redistribution stimulated by the exchange
of ion currents. Considerable progress in this direction
was recently reported in [3–5] where semiconductor p-n
wires were shown to provide a suitable medium for the
transmission of electrical pulses in the manner of biologi-
cal neurons. However, an essential feature of real neurons
is their ability to function in a stochastic environment
[6,7], and, in particular, to exploit the power of random
noise to enhance the propagation of useful signals along
their axons [8,9]. It is important to reproduce this property
in hardware in order to create a realistic neuronlike
structure.

In this Letter we report on the performance of a semi-
conductor neuron that is subjected to the combined stimu-
lation of a random Gaussian noise and a periodic
perturbation applied to its inputs. We have experimentally
found that the proposed device is able to demonstrate the
whole spectrum of nontrivial stochastic phenomena
[10,11], some of which were observed earlier in biological
neurons: coherence resonance [12], stochastic resonance
[13–15] and stochastic synchronization [16]. In all of the
above effects the increase in the strength of random noise
from zero to somemoderate value, counterintuitively, leads
to more regular oscillations in the system. We identify an
optimal level of noise at which spiking is most regular,
while either too much or too little noise results in less
ordered motion in the system. We study the transition

between coherence and stochastic resonances to demon-
strate that this transition is accompanied by the phenome-
non of stochastic synchronization. We propose a theo-
retical model which describes the performance of the
semiconductor neuron in very good agreement with experi-
mental data. The neuron is well suited to making networks
capable of learning sequences of interspike intervals with-
out supervision [17], of simulating neocortical architec-
tures [18,19] and probing the effects of time delayed
coupling on neural synchronization [20,21].
The key elements of real neurons are the dendrites,

soma, and axon. Dendrites and axons are nerve fibers
that transmit electrical signals to and from the soma. The
soma collects (sums and integrates) the electrical inputs
from individual dendrites. Crucially, soma and axon are
connected by an axon hillock—an element that produces a
travelling spike in the axon if the total signal arriving at the
soma is larger than a certain threshold value. The axon
hillock thus behaves as a threshold amplifier.
Artificial ‘‘neurons’’ were synthesized fromGaAs=AlAs

layers grown by molecular beam epitaxy according to the
following sequence: n type: 5� 1017 cm�3ð80 nmÞ=p
type: 5� 1017 cm�3ð60 nmÞ=AlAs=nþ type: 6�
1018 cm�3ð40 nmÞ=pþ type 4� 1019 cm�3ð500 nmÞ=
GaAs buffer. Through a combination of selective etching
and lithography described elsewhere [3,4], we obtain the
free standing neuronlike structure shown in Fig. 1(a). p-n
wires form a web of microtransmission lines (‘‘dendrites’’)
which meet at the active center of the structure (soma-axon
hillock).
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The depletion region of the p-n wire is physically
equivalent to the nerve membrane. It supports the propa-
gation of depolarization waves in much the same way as
nerve fibers do propagate action potentials because both
transmission lines obey the same diffusion equation [5].
The diffusion process integrates the inputs which arrive at
the ‘‘soma’’ delayed and attenuated. The attenuation factor
is 8.8 (35) in the short (long) dendrite [4]. If the sum of
incoming signals is larger than the threshold voltage Vth ¼
80 mV, the soma emits a depolarization wave into the
‘‘axon.’’ Threshold amplification is implemented by a
pþ-nþ quantum tunnelling amplifier whose sigmoid gain
curve is shown in Fig. 1(b). The gain curvewas obtained by
applying rectangular pulses and measuring the height of
the output pulses Vout as a function of the amplitude of
input pulses. The gain is the ratio of output to input pulse
heights.

The external circuit pictured in Fig. 1(a) is used to
control the excitable regime of the soma. Under experi-
mental conditions, the tunnel characteristics was biased as
shown in Fig. 1(c). The hatched region corresponds to self-
oscillations of the soma. The series resistance was R ¼
0 � [22] and Vsoma was set below the onset of self-
oscillations when the operating point (I0, V0) is at the
edge of the negative differential resistance region. A small
perturbation through the p-n wire in this case activates a
large spike before the soma returns to equilibrium. The
property of excitability is therefore achieved through the
positive feedback of the tunnel layers on the p-n wire.

Here, we set Vsoma ¼ 290 mV to obtain the threshold
Vth ¼ 80 mV described above. The tunnel element has
capacitance C ¼ 1:6 nF [3], L ¼ 10 mH, and the fre-
quency of self-oscillations of soma is 30 kHz. The equiva-
lent circuit of the soma is pictured in Fig. 1(d). Figure 2(a)
shows a typical spiking sequence output by the neuron
when noise only was applied. A phase portrait showing
the stochastic limit cycle, reconstructed from this sequence
by delay embedding, is shown in (b). This behavior is also
found by simulating Eqs. (2)—see (c),(d).
The property of excitability enables the neuron to trans-

mit a subthreshold periodic signal with the help of noise:
the energy of noise is used to amplify the periodic signal,
and the amplification is the largest at some optimal noise
intensity. This phenomenon is known as stochastic reso-
nance [23]. We have applied a sinusoidal voltage to one

FIG. 2. Sequence of output spikes for VD ¼ 0: (a) experi-
mental, (c) calculated. Phase portraits: (b) experimental � ¼
1:6 �s, (d) theoretical � ¼ 0:075
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FIG. 1 (color online). (a) Solid state neuron excited by a
sinusoidal drive of amplitude VD and a white noise with standard
deviation (rms voltage) VN . Depolarization waves emanating
from input contacts diffuse along the p-n wire and interfere in
the central region (soma) before reaching the output. The pþ-nþ
tunnel layers are the pillars supporting the free standing p-n
lines. (b) Sigmoid gain curve of the tunnel amplifier. (c) I-V
characteristics of the tunnel device (N-shaped) and the load line
including circuit elements R ¼ 0 �, L ¼ 10 mH, Vsoma ¼
290 mV and the p-n wire. (d) Equivalent circuit of the artificial
soma.

FIG. 3 (color online). (a)–(d) Sequences of spiking events at
four noise intensities across stochastic resonance. For clarity, the
noise is shown �10�1. (e)–(h) Power spectral densities of the
output signal. The peak passes through a maximum at VN ¼
130 mV.
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dendrite, a digitally synthesized Gaussian white noise to
another, and measured the output waveform with a DAQ
acquisition card. Drive frequencies fD ¼ 1 kHz–30 kHz
were investigated for signal amplitudes ranging from sub-
threshold to superthreshold. Experimental outcomes were
similar when uniformly distributed noise was used instead.

To find the conditions of optimum amplification, we
increase VN from 20 mV to 280 mV in Fig. 3. With no
or vanishing noise [panel (a)], the 40 mV subthreshold
signal decays passively through the structure. Spiking
bursts appear and become more frequent as noise in-
creases. The output is closest to being periodic at VN ¼
130 mV [panel (c)]. Further increases in noise level restore
irregular spiking patterns [panel (d)]. The power spectrum,
in panels (e)–(h), shows that the amplified frequency is the
28 kHz frequency of the input drive, and that optimum
amplification occurs at VN ¼ 130 mV, thus demonstrating
stochastic resonance.

To quantify the amplification of a periodic signal by
noise, we plot the characteristics of output oscillations in
Fig. 4. The output spectrum was decomposed into the noise
background and the peak at fD. Three integrals were
calculated: the integral over the full spectrum (total power
Ptot), over the noise background (power of noise Pnoi), and
over the peak [power of periodic component Pper (a),(d)].

In (b),(e) the mean spiking frequency is shown. Finally, to
enable comparison with the case when periodic driving is
absent, the regularity of spiking was characterized by the
standard deviation of interspike intervals normalized by the

mean spiking period, RT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðTÞp

=hTi (c),(f).
At VD ¼ 0 mV [solid line in (c)], the noise-induced

spiking is closest to periodic at an optimal VN ¼ 210 mV
(largest value of 1=RT), and this is associated with coher-
ence resonance (CR) [24,25]. The spiking frequency is
30 kHz [solid line in (b)], slightly above the driving fre-
quency, fD ¼ 28 kHz.

At VD ¼ 40 mV, the coherence peak occurs at slightly
lower noise while the mean frequency develops a small
plateau at fD ¼ 28 kHz [full circles in (b)]. Ptot and Pnoi

grow monotonically with VN at almost the same rate at
both small and large noise. At intermediate noise, Ptot in-
creases faster than Pnoi allowing Pper to pass through the

stochastic resonance maximum described above [(a) full
circles].

At VD ¼ 70 mV, the coherence peak has shifted further
to lower noise [(c) open circles] however the situation is
somewhat different. At small noise (VN < 14 mV), the
neuron is totally silent, but as soon as spiking starts at
VN � 14 mV, the frequency is close to that of external
driving for a large range of noise intensities [(b), open
circles], which is evidence of stochastic synchronization
[15,26]. Pper [(a) full circles] jumps to its maximum value

at VN � 14 mV, and has an extended plateau. At VN >
210 mV, fexp increases monotonically with noise. This

noise driven pulsing mode is robust and almost indepen-
dent of VD [panel (b)].

At suprathreshold amplitudes, VD > 80 mV, oscilla-
tions are no longer noise-induced. Spiking becomes peri-
odic at frequency fD, and noise smears it. This is shown in
Fig. 5 (a) where Pper decays to zero as VN increases. The

spiking frequency fexp is mapped in panel (b).

A model of the neuron was constructed from first prin-
ciples. We assume that the dendrites and axon attenuate
signals, but otherwise do not transform them. The crucial
part of the neuron is the soma with axon hillock, whose
equivalent circuit is given in Fig. 1(d). Kirchhoff’s equa-
tions of this circuit are:

dV

dt
¼ 1

C
ði�gðVÞÞ; di

dt
¼� 1

L
ðVþRiþVaþVsomaÞ;

(1)
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FIG. 4 (color online). Characteristics of the neuron output as a
function of noise at three amplitudes of the drive signal: VD ¼
70 mV (open symbols), 40 mV (full symbols), 0 (solid line). (a),
(c) Power of periodic component at fD ¼ 28 kHz; (b),(e) mean
spiking frequency; (c),(f) coherence of interspike intervals. The
simulated frequency (power) was converted from dimensionless
to experimental units by multiplying with 3:4=ðjgjLÞ (340 �W.)

FIG. 5 (color online). (a),(c) Power of periodic component;
(b),(d) mean spiking frequency as a function of drive and noise
amplitudes. Left: experimental data; right: simulation with
Eqs. (2).
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where V is the voltage across the tunnel element, i is
the current through the soma and gðVÞ ¼ 114 �A½ððV�
206 mVÞ=57 mVÞ3=3�ðV� 206 mVÞ=57 mV�þ 132�A
is the cubic polynomial approximating the negative differ-
ential region of the tunnel characteristics in Fig. 1(c). Va ¼
½VD sinð2�fDtÞ þ VN�2ðtÞ� is the time dependent voltage
(periodic driveþ noise). After making the following
change of variables,

x ¼ V � 206 mV

57 mV
; y ¼ 132 �A� i

114 �A
;

� ¼ 1

jgjL t; � ¼ C

jgj2L ;

� ¼ ðVth=8:8Þ þ 57 mV

57 mV
; V 0

D ¼ VD

8:8� 57 mV
;

V 0
N ¼ VN

35� 57 mV
; f0D ¼ fDjgjL;

and with account of R ¼ 0 �, Eqs. (1) are transformed
into the dimensionless FitzHugh-Nagumo equations [27]:

�
� _x¼ ~gðxÞ�yþV0

N�1ð�Þ; ~gðxÞ¼x�x3=3

_y¼xþ�þV0
D sinð2�f0D�ÞþV0

N�2ð�Þ;
;

(2)

where x is the membrane potential, y is the recovery
variable and jgj ¼ 2 mS (114 �A=57 mV) is the nega-
tive differential conductance of the tunnel element [22].
Unlike in the classical model, here the external input
½V 0

D sinð2�f0D�Þ þ V 0
N�2ð�Þ� is applied through the voltage

in the second equation, rather than through the current in
the first equation. Also, we introduce the uncorrelated
sources of noise �1;2 into both equations to take a better

account of noises in the real devices.
Parameters � and � were obtained accurately by fitting

the data in the range [0; 0:2 V] for V 0
D and [0; 0:6 V] for

V 0
N. The method is accurate because the neuron output is

quite sensitive to the variation of �. Figures 2, 4, and 5
show a good agreement between the experiment and the
model. � and � were also estimated by inserting the circuit
parameters into the transformation equations. The fitted
(estimated) values are � ¼ 0:1 (0.04) and � ¼ 1:02 (1.16).
The transformation formulas allow converting V0

N , V
0
D in

quantitative agreement with VN and VD whereas the simu-
lated f0D is factor 3.4 smaller when converted into SI units.
This discrepancy is due to the approximation of the I-V
curve by a 3rd order polynomial gðVÞ which breaks down
far from the negative differential resistance region.

We have also found that the noise dependence in
Fig. 4(c) at VN > 210 mV and Fig. 5(b), can be accounted
for by considering an extra noise source, �1ðtÞ, in addition
to the intentionally applied noise �2ðtÞ. The extra noise
source is believed to arise from the current surges in the
soma circuit which regenerate pulses. The passage of such
current through the Ohmic contact resistance at the center
of Fig. 1(a) generates shot noise. Noise sources �1ðtÞ and
�2ðtÞ are thus uncorrelated.

In summary, we have constructed a spatially delocalized
neuron which provides understanding of the interplay be-
tween stochastic resonance, coherence resonance and sto-
chastic synchronization in a controlled environment. The
neuron provides direct feedback on mathematical models
and is useful as a versatile building block of future complex
networks.
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