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We investigated the spin lifetime in gate-fitted InGaAs narrow wires from magnetotransport measure-

ment. Applying positive gate bias voltage, the spin lifetimes in narrow wires became more than one order

longer than those obtained from a Hall bar sample with two-dimensional electron gas. This enhancement

of spin lifetime in gated wires is the first experimental evidence of dimensional confinement and resonant

spin-orbit interaction effect controlled by gate bias voltage. Spin relaxation due to the cubic Dresselhaus

term is negligible in the present InGaAs wires.
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In addition to the charge of electrons, spin degree of
freedom in semiconductors is a promising candidate for
controllable information carriers in novel spintronics de-
vices [1–3] and quantum computing [4]. Both electrical
spin manipulation and long spin lifetime are significantly
important for such spin-based information devices. A spin-
orbit interaction (SOI) gives rise to an effective magnetic
field, which induces spin precession of moving electrons.
Since the potential gradient in two-dimensional electron
gas (2DEG) can be controlled by external gate bias, the
Rashba SOI [5] enables spin manipulation by electrical
means [6,7]. However, an SOI is a double-edged sword
because its momentum-dependent effective magnetic field
randomizes spin orientations due to the D’yakonov-Perel’
(DP) spin relaxation mechanism [8].

Recently, much attention is being focused on the sup-
pression of spin relaxation in the presence of SOIs. One
way to suppress spin relaxation is dimensional confine-
ment of the momentum of electrons with a narrow channel
whose widthW is less than the bulk spin precession length
LSO [9]. This dimensional confinement effect has been
confirmed by transport measurement using weak antiloc-
alization (WAL) analysis [10–12] and by optical measure-
ment [13]. Since the confinement effect can be controlled
by the gate modulation of LSO ¼ @

2=2�me via the Rashba
SOI parameter �, electrical control of spin relaxation is
also possible in narrow wires. However, this electrical
control of spin relaxation has not yet been experimentally
confirmed by using gate-fitted narrow wires.

Another way to suppress spin relaxation is the utilization
of a uniaxially oriented effective magnetic field where the
linear Dresselhaus SOI [14] parameter � is equal to � [15–
17], when the cubic Dresselhaus parameter � is negligibly
small. This uniaxial effective magnetic field yields persis-
tent spin helix (PSH) state in which the DP mechanism is
completely suppressed, leading to infinite spin lifetime [2].
After this theoretical prediction, PSH has recently been
reported in optical spin lifetime measurement by using the
transient spin-grating technique [17]. Since demonstration
of resonant SOI effect with gate modulation is of impor-

tance for future spintronics devices, electrical manipula-
tion of � in narrow wires has great potential for both
electrical spin manipulation and long spin lifetime.
In this Letter, we investigated gate voltage dependence

of magnetoconductance in InGaAs-based narrow wires.
We found that the spin lifetime in narrow wires becomes
more than one order longer than that in a Hall bar in the
higher carrier density region. This remarkable increase of
spin lifetime can be attributed to the effect of uniaxial
effective magnetic fields due to � ! � as well as to the
dimensional confinement in narrow wires.
The epitaxial In0:52Al0:48As=In0:53Ga0:47As=

In0:7Ga0:3As ðquantum wellÞ =In0:53Ga0:47As=InP hetero-
structure grown on (001) InP was processed into sets of
wires which were aligned along ½1�10� using electron beam
lithography and reactive ion etching as shown in Fig. 1(a).
Each sample consisted of 95 identical 650-�m-long wires
covered by SiO2=AuGeNi gate electrode. Geometrical
width WSEM of the wire defined by scanning electron
microscopy were 477, 566, 766, 861, 1026, and
1263 nm. Gate voltage dependences of carrier density Ns

and mobility� for a Hall bar and each wire structures were
determined from sheet resistance and the fast Fourier trans-
formation of Shubnikov–de Haas oscillation at T ¼ 0:3 K.
The observed WAL in the Hall bar was fitted by the
Iordanskii, Lyanda-Geller, and Pikus (ILP) model [18] to
extract the gate voltage dependence of � as shown in
Fig. 1(b) and bulk spin precession length LSO ¼
@
2=2�me. This carrier density dependence of � is consis-
tent with � calculated by the k � p formalism [19].
We now turn to the transport properties in narrow wires.

As shown in Fig. 1(c), conductance of different narrow
wires with no gate bias in the absence of a magnetic field
show linear width dependence. Depletion width Wdep ¼
309 nm is deduced from the x-intercept. It turns out
that electron motion in wires is limited by effective
width Weff ¼ WSEM-Wdep rather than by WSEM.

Magnetoconductance data are shown in Fig. 1(d).
Crossover from WAL to weak localization (WL) is ob-
served with the reduction ofWSEM. This width dependence
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of magnetoconductance indicates that spin relaxation is
suppressed by decreasing the wire width as reported by
Schäpers et al. [10]. We then measured the gate voltage
dependence of magnetoconductance with different wire
widths. The experimental results for the wire of WSEM ¼
477 and 861 nm are shown in Fig. 2. Narrow wires with
WSEM ¼ 477 and 566 nm showed only WL through out the
entire gate region. This implies that spin relaxation length
l1DSO in such narrow wires is always longer than the inelastic

scattering length l� which increases with carrier densities.

In contrast, in the cases of the wires whose widths are
WSEM ¼ 766 and 861 nm, twofold crossover of WL-WAL-
WL was observed when the carrier densities were
increased.

In the case of narrow wire in which l� exceedsWeff , the

ILP model is no longer applicable. Recently, Kettemann
has developed a model describing quantum correction of
conductivity with lateral confinement and SOIs effect [20].
First, we deduced carrier density dependence ofWdep from

the fitting of the Kettemann model to the magnetoconduc-
tance observed for 477 nm wire with fitting parameter l�
and Weff following previous study [21], and we confirmed
that Wdep ¼ 313� 15 nm is almost constant with carrier

density. We then fitted the Kettemann model to the experi-
mental results with the fitting parameters of l1DSO and l�, in

which Wdep is fixed at 313 nm. Indeed, not all of our

experimental data in the wider wire than WSEM ¼
766 nm are included in the applicable region of the
Kettemann model, i.e., Weff <LSO. Nevertheless, even in
the case of 1263-nm wide narrow wire, we confirmed that
magnetic field at the conductance minima corresponding to
the spin relaxation magnetic field HSO ¼ 1:3 mT is much
smaller than HSO ¼ 3:2 mT of Hall bar. This decrease of
HSO strongly indicates that dimensional confinement effect
already appears in the wire of WSEM ¼ 1263 nm although
Weff ¼ 950 nm is 3 times longer than LSO ¼ 314 nm at
Ns ¼ 1:0� 1012 cm�2. Thus, we applied the Kettemann
model to the magnetoconductance data over the range of
Weff < LSO. Extracted l

1D
SO and l� are plotted in Fig. 3 with

lel, elastic scattering length. For all wires, l� and lel
monotonously increase with increasing Ns. In the cases
of WSEM ¼ 766 and 861 nm, l1DSO shows rapid increase in

the high carrier density region above 1:4� 1012 cm�2.
From Figs. 3(c) and 3(d), suppression of WAL in the low
carrier density region is seen to be caused by the decrease
of l�. The reduction of l� with negative gate voltages can

be explained in terms of the electron-electron scattering
rate due to decreasing carrier density and mobility [22]. On
the other hand, suppression of WAL in the high carrier
density region is caused by the rapid increase of l1DSO, which
exceeds l�.

Even though the Ketteman model is only available for
the diffusive wires, we confirmed that the Kettemann
model is applicable for the wire investigated here by
comparing the quantum correction in one-dimensional
limit (ballistic regime) without SOI developed by
Beenakker and van Houten (BvH) [23]. In narrow wires
of WSEM ¼ 477 and 566 nm, we observed WL in whole
gate voltage region. Therefore, the phase coherent length
obtained by the Ketteman model l1DSO ¼ l’ can be com-

pared with these obtained by the BvH model as shown
filled and open squares, respectively, in Figs. 3(a) and 3(b).
We found that both two models provide more or less

FIG. 2 (color online). Magnetoconductance with different gate
bias voltages in units of e2=hðWSEM ¼ 477 and 861 nm). Solid
lines show the fitting results of Kettemann model.
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FIG. 1 (color online). (a) Schematic illustration and scanning
electron micrograph of narrow wire structure. (b) Carrier density
dependence of Rashba parameter � by fitting ILP model to
magmetoconductance of Hall bar structure. Solid line is derived
by the least-square method. (c) WSEM dependence of conduc-
tance G. Solid line is derived by the least-square method and its
x-intercept means depletion width Wdep. (d) Magneto-

conductance with different wire widths WSEM in units of e2=h.
All curves were measured at Ns ¼ 1:0� 1012 cm�2, T ¼ 0:3 K.
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similar values of phase coherent lengths showing the va-
lidity of the Ketteman model for the ballistic wire inves-
tigated here. Same conclusions are also found in Figs. 3(c)
and 3(d).

To understand this enhancement of l1DSO in the high carrier

density region, we considered the spin relaxation rate in the
quasi one-dimensional structure derived by Kettemann
[20]:

1

�1DSO
¼ 1

12

�
Weff

LSO

�
2
�2
SO

1

�2DSO
þD

ðm2
eEF�=@

2Þ2
@
4

; (1)

where D,me, and EF are diffusion constant, effective mass
of an electron, and Fermi energy, respectively. �SO is given
by

�SO ¼ ðQ2
R �Q2

DÞ=ðQ2
R þQ2

DÞ; QR ¼ 2me�=@
2;

QD ¼ með2��meEF�=@
2Þ=@2:

The first term in Eq. (1) is the modified spin relaxation rate
from 2DEG �2DSO due to the dimensional confinement,

ðWeff=LSOÞ2, and the resonant SOI effect, �SO. The second
term in Eq. (1) shows the spin relaxation rate induced by
the cubic Dresselhaus term. As shown in Fig. 4, enhance-

ment of l1DSO ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D�1DSO

q
due to dimensional confinement is

confirmed at various carrier densities. However, l1DSO calcu-

lated from Eq. (1) are much smaller than experimental
results as shown by dashed lines, especially in the high
carrier density and the small width region, due to spin
relaxation rate based on the second term of Eq. (1). Thus,
we calculated l1DSO neglecting second term in Eq. (1). The

recalculated l1DSO, shown as solid lines in Fig. 4, show good

agreements with experimental data. From this analysis, it is
found that spin relaxation due to the cubic Dresselhaus
term may be suppressed by dimensional confinement in the
present sample. When we consider pure 1D wires under the
existence of cubic Dresselhaus SOI, DP spin relaxation is
completely suppressed since the effective magnetic field
only changes its sign due to 1D electron motion. Thus, it
may be natural to reach the suppression of the cubic
Dresselhaus SOI as the wire goes to ballistic limit. We
then plotted the spin lifetimes �1DSO as a function of the

dimensional confinement parameter ðLSO=WeffÞ2 in Fig. 5.
In Fig. 5, spin lifetime �1DSO observed in 766- and 861-

nm-wide wires rapidly increases when dimensional con-
finement becomes much stronger, i.e., ðLSO=WeffÞ2 > 1.
To understand the enhancement of spin lifetime, �1DSO in

Eq. (1), where all SOI contributions are taken into account,
was calculated as shown by the green dashed-dotted line in
Fig. 5 with � ¼ 1:20� 10�12 eVm estimated from � ¼
�hk2zi, where the parameter of cubic Dresselhaus term � ¼
2:73� 10�29 eVm3 [24] and wave number along the quan-
tized direction kz ¼ 2�=	. Here, 	 is the electron wave
length inside the QW. The calculated spin lifetime dose not
increase and remains very small with the increase of
ðLSO=WeffÞ2. As a result, we cannot explain the rapid
increase of spin lifetime if all SOI contributions are taken
into account. In contrast, �1DSO with neglecting second term

in Eq. (1) rapidly increases with the increase of
ðLSO=WeffÞ2 and shows good agreement with the experi-
mental results for wires of both WSEM ¼ 766 and 861 nm.
In addition, as shown by the dashed lines in Fig. 5, when
the resonant SOI effect is neglected, i.e., �SO ¼ 1, en-
hancement of spin lifetime is limited with increasing
ðLSO=WeffÞ2 in contrast to the solid line taking both the
resonant SOI effect and the dimensional confinement into
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FIG. 4 (color online). Width dependence of l1DSO of different
carrier density. Solid lines and dashed lines show the l1DSO calcu-

lated from Eq. (1) with neglecting second term and taking into
account full SOIs, respectively. At Ns ¼ 0:8� 1012 cm�2,
dashed line is on top of solid line, meaning the second term is
negligible. Open symbols show the l� obtained by fitting

Kettemann model to the WL data which corresponds to mini-
mum values of l1DSO.
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account. According to Fig. 1(b), resonant SOI effect is
expected at Ns ¼ 1:56� 1012 cm�2 since estimated linear
Dresselhaus SOI parameter � is 1:20� 10�12 eVm. This
carrier density corresponds to the enhancement of spin
relaxation length observed in the wire of WSEM ¼ 766
and 861 nm in Figs. 3(c) and 3(d). Consequently, the
dominant contribution of the enhanced spin lifetime is
for approaching both the resonant SOI condition where
the effective magnetic field is uniaxial and the dimensional
confinement due to the electrical modulation of
ðLSO=WeffÞ2. The above data analysis suggests that the
spin relaxation due to the cubic Dresselhaus term is also
suppressed by the geometrical confinement effect.

On the contrary, Holleitner et al. have observed satura-
tion of spin lifetime with decreasing wire width [13]. They
have attributed this saturation to the cubic Dresselhaus SOI
or Elliot-Yafet spin relaxation mechanism. We did not
observe cubic Dresselhaus effect in the present wire
samples. This discrepancy is an open question and it will
be for future study.

Furthermore, to confirm the enhanced spin lifetime, we
also fitted WL data observed at maximum ðLSO=WeffÞ2 by
BvH model. Since the �� derived by BvH corresponds to

the lower limit of spin lifetime, we can estimate the mini-
mum value of �1DSO. Inelastic scattering time �� ¼ 27:4 and

37.8 psec were extracted by fitting of the BvH model for
wires of WSEM ¼ 766 and 861 nm, respectively. Extracted
�� are shown as open symbols in Fig. 5, which show

similar values of the spin lifetime derived from the
Kettemann model. Consequently, enhanced spin lifetime
was again confirmed by different theoretical approaches.

In conclusion, gate voltage dependence of magnetocon-
ductance in InGaAs narrow wires was investigated. In wire
widths of WSEM ¼ 766 and 861 nm, twofold crossover of

WL-WAL-WL was observed by changing gate bias volt-
age. From the comparison between experimental data and
theoretical model, it was found that spin lifetime is en-
hanced one order longer than in the case of the Hall bar in
the high carrier density region. This remarkable enhance-
ment of spin lifetime was explained by considering both
dimensional confinement and resonant SOI effect.
Surprisingly, our experimental results suggest that the
spin relaxation due to the cubic Dresselhaus term is also
suppressed in the present InGaAs wires. A gate-fitted
InGaAs wire enables electrical manipulation together
with long spin lifetime.
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