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We study the conductivity, density of states, and magnetic correlations of a two-dimensional, two-band

fermion Hubbard model using determinant quantum Monte Carlo (DQMC) simulations. We show that an

orbitally selective Mott transition (OSMT) occurs in which the more weakly interacting band can be

metallic despite complete localization of the strongly interacting band. The DQMC method allows us to

test the validity of the use of a momentum independent self-energy which has been a central approxima-

tion in previous OSMT studies. In addition, we show that long range antiferromagnetic order (LRAFMO)

is established in the insulating phase, similar to the single band, square lattice Hubbard Hamiltonian.

Because the critical interaction strengths for the onset of insulating behavior are much less than the

bandwidth of the itinerant orbital, we suggest that LRAFMO plays a key role in the transitions.
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Introduction.—The problem of a strongly correlated
band put in contact with a more weakly interacting one is
of long-standing interest. In the case of the periodic
Anderson model (PAM), for example, one orbital is com-
pletely free of interactions, while a second orbital is at the
opposite extreme: it has no hopping from site to site (zero
bandwidth) and instead has only an on-site hybridization V
with the uncorrelated band. A competition between on-site
singlet formation between electrons in the two different
orbitals and RKKY mediated antiferromagnetic (AFM)
order occurs as a function of V, and a resonance in the
density of states at the Fermi surface is present at the
transition between these two regimes.

Recently there have been a number of studies, [1–4]
mainly within dynamical mean field theory (DMFT) [5],
of the general question whether two different bands can
exist with one metallic and the other insulating, the so-
called ‘‘orbitally selective Mott transition’’ (OSMT).
Alternate methods of treating the correlations of the impu-
rity problem arising within DMFT, ranging from iterated
perturbation theory [1] to quantum Monte Carlo (QMC)
methods [1,2] and exact diagonalization [3,6] yield differ-
ent results. The form of the interband coupling and, spe-
cifically, whether the Hund’s rule term is treated in an SU
(2) symmetric way or only an Ising term is retained, was
also thought to affect the results. By now it is established
that, within DMFT and using the most accurate impurity
solvers, an OSMT is possible. As might be expected, the
narrow band becomes insulating first, as correlations in-
crease, followed by the wide band. Attention has also
focused on the nature of the transitions which are, in
general, believed to be first order.

The most well controlled theoretical work on the OSMT
has been formulated within the framework of model
Hamiltonians (multiband Hubbard models) whose simplic-

ity allows for precise numerical studies. However, similar
issues have also been addressed using a combination of
electronic structure and many-body methods for real ma-
terials. The cerium volume collapse transition [7] is one
example in which there is an interplay between localized f
and metallic d orbitals. As in the PAM, the orbitals see
each other through hopping processes as well as interac-
tion, and Kondo physics arising from singlet formation
plays a crucial role [7,8]. Similar OSMT physics occurs
in other materials such as Ca2�xSrxRuO4 [9].
The range of different conclusions which arise depend-

ing on the treatment of the many-body correlations within
DMFT suggests that there is a crucial need to examine also
the role of the local DMFT approximation itself. In this
Letter we use the determinant quantum Monte Carlo
(DQMC) method to study the OSMT. This method allows
us to test rigorously the effect of ignoring momentum
dependence in the self-energy within DMFT as well as to
examine the real space AFM correlations which could form
along with the Mott insulating transition.
Model and computational method.—We consider a

Hamiltonian in which there is one correlated electron
band and a second orbital which is fully localized and
represented by a set of spin- 12 degrees of freedom,
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Here t allows the hopping of electrons of spin � between

adjacent sites hiji of a square lattice, with cyi�ðci�; ni�Þ the
associated creation (destruction, number) operators. U is
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the on-site repulsion. We chose t ¼ 1 as our energy scale.
A chemical potential � controls the filling. We set � ¼ 0
which, by particle-hole symmetry, pins the density at half-
filling, � ¼ 1. These fermions are coupled to a set of local
spin- 12 degrees of freedom Si at each lattice site. We restrict

the Hund’s rule interaction to the Jz term, as has been done
by Costi et al. in a recent DMFT study [10].

In general, the symmetry of the crystal lattice can lead to
anisotropies in the Hund’s rule exchange. While these will
not zero out spin-flip terms, if the coefficient of the Ising
term is larger, it has been argued both for the metallic [11]
and for the insulating [10] phases, that the spin-flip term
renormalizes to zero, while the Ising term remains finite. In
other words, the system is in the universality class of the
Ising only model studied here, and the nature of the phases
and the issue of the presence of an OSMT will be un-
changed. Of course, the specific location of the phase
boundaries will be affected.

In Eq. (1) the spins represent a localized orbital; hence
the question of an OSMT devolves to whether a metal-
insulator phase change can occur in the remaining itinerant
fermion orbital as the energy scales J and U are tuned.
Equation (1) is closely related to the Kondo lattice model,
except that an on-site U is present for the electronic
degrees of freedom, which is set to zero in the Kondo
case. Changing U allows, potentially, for tuning through
an OSMT. A number of experimental systems can be
approximately described by such a mixture of electrons
and spins [12]. There are other materials whose qualitative
physics has been suggested to be described by Eq. (1),
including Ca2�xSrxRuO4 where a spin- 12 Ru ion moment

coexists [10,13,14] with a metallic state near x ¼ 1
2 .

Our methodology is a version of the DQMC [15] algo-
rithm often used to study Hubbard Hamiltonians, modified
to include the effects of the fluctuating local spin degrees of
freedom which represent the localized band. These local
spins, together with the Hubbard-Stratonovich (HS) field
which decouples the interaction, specify the up and down
spin determinants whose product acts as the weight for the
combined HS and local spin configuration. The HS field
depends on both the spatial site and on the imaginary time
coordinate � which arises when the inverse temperature �
is discretized. The local spin, on the other hand, while
varying in space, is constant in �. The HS variables are
updated with the usual fast algorithm which uses the
fermion Green’s function to compute the change in the
determinant [15]. The local spin is updated with a variant
of the approach used for ‘‘global moves’’ to ensure ergo-
dicity in the HS distribution in the determinant DQMC
method [16], since those moves were also developed to
handle changes which are nonlocal in �.

The possibility of an OSMT in Eq. (1) with J? ¼ 0 has
been explored in DMFT [10]. The local moment hS2zi
increases rapidly at a critical value of interaction strength
which is a decreasing function of J=U. At the weakest
J=U < 0:05, hS2zi exhibits kinks indicative of a first order

OSMT. The evolution of the local moment is smoother for
larger J=U, as the OSMT becomes second order. In Fig. 1
we show the behavior of hS2zi in our DQMC calculations.
Consistent with DMFT, there is an interaction strength,
which decreases as J=U increases, for which the local
moment changes rapidly. Significantly, in the neighbor-
hood of this U value, the system must be cooled to a lower
temperature in order to reach the ground state, indicative of
the competition between states of nearly degenerate energy
at a phase boundary.
Within mean field theories, the local moment acts as an

order parameter, since when fluctuations are neglected the
distinction between the energy scales associated with local
moment formation and long-range magnetic correlations is
blurred. However, the local moment loses its sharp struc-
ture when spatial fluctuations are included, as is the case
with the DQMC simulations reported here. We therefore
turn to measurements which can signal the OSMT more
clearly. A key conclusion of our Letter is that the OSMT
found in DMFT survives.
Density of states.—DQMC allows the direct measure-

ment of the space and imaginary time Green’s function and
two particle correlation functions, frequency dependent
quantities can be obtained through a maximum entropy
analytic continuation procedure [17] which inverts the
integral relation between ! and �.
Figure 2 (left) shows the density of states at the Fermi

surface Að0Þ for fixed J=U ¼ 0:2. We see that as T ! 0,
Að0Þ is nonzero for U=t < ðU=tÞc � 0:5� 0:1. Above
this critical value, the low temperature limit of Að0Þ is
zero. ðU=tÞc lies very close to onset point of U=t at which
the local moment starts exhibiting pronounced temperature
dependence, Fig. 1 (left), as well as to the value U=t � 0:6

0 0.5 1 1.5
 U

0.5

0.6

0.7

S
z2

β=10
β=12
β=14

0 0.5 1 1.5
 U

J/U=0.1
J/U=0.2
J/U=0.4

 J/U=0.2  β=14

FIG. 1 (color online). Left: The local moment hS2zi of the
correlated electron band is shown as a function of U for three
different values of inverse temperature � for fixed J=U ¼ 0:2.
hS2z i reaches its ground state value at �< 10 at weak and strong
coupling and shows a roughly linear dependence on U. In the
intermediate coupling regime, hS2zi has an s-shaped form, and
continues to evolve as T is lowered. Right: The transitional
s-shaped structure in hS2zi is seen to move to weaker coupling
as J=U increases at fixed � ¼ 14. The system is half-filled and
size is 8� 8.
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at which hS2zi is changing most rapidly with interaction
strength in Fig. 1 (right).

Figure 2 (right) exhibits the energy dependence of Að!Þ.
For U=t below the temperature crossing in Fig. 2 (left),
Að!Þ has a maximum at ! ¼ 0, confirming this as a
metallic state. By the time U=t ¼ 0:75 this maximum has
been replaced by a deep minimum, almost to Að0Þ ¼ 0.
Indeed, if the temperature were lowered further a full gap
would form, such as is seen for U=t ¼ 1:0. Figure 2 (right)
demonstrates that a OSMT occurs in the Hamiltonian
Eq. (1). The size of the gap � in Að!Þ is roughly U.
However, one typically expects a gap set by U only deep
in the Mott region where U exceeds the bandwidth W ¼
8t. As we shall discuss further below, we believe that here,
instead, the gap � has a pronounced AFM origin and is set
by Umafm where mafm is the AFM order parameter.

Conductivity.—The dc conductivity �dc can be obtained
from the large imaginary time dependence of the current-
current correlation function [18]. We show the results in
Fig. 3. As with Að0Þ, curves for different temperatures T
cross as a function of U. The intersection demarks a
transition from a metallic phase where d�dc=dT < 0 to
an insulating phase with d�dc=dT > 0. The crossing point
for J=U ¼ 0:2 is consistent with the critical values ob-
tained from hS2zi (Fig. 1) and Að0Þ (Fig. 2).

Magnetic correlations.—The presence of a gap in Að!Þ
even when U is an order of magnitude less than the
bandwidth suggests that the insulating behavior does not
arise purely from Mott physics—an energy lowering from
avoiding double occupancy exceeding the cost in kinetic

energy. We now explore the AFM correlations which can
give rise to a Slater gap in the spectrum.
Figure 4 shows the AFM structure factor Szzð�;�Þ ¼

1
N

P
i;jð�1ÞiþjhSziSzji. When long range order is absent, the

real space spin correlation hSziSzji decays exponentially.

Only sites jwithin a correlation length � of site i contribute
to the sum, and as a consequence, Szzð�;�Þ, approaches a
lattice size independent value at large N. Szzð�;�Þ=N,
shown in Fig. 4, therefore vanishes in the thermodynamic
limit. On the other hand, in an ordered phase, the real space
spin correlation hSziSzji is large for all pairs of sites i, j. The
structure factor Szzð�;�Þ, is proportional to N, and
Szzð�;�Þ=N, shown in Fig. 4, goes to a nonzero value.
Huse [19] has used spin wave theory to make this argument
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FIG. 3 (color online). The dc conductivity �dc is shown as a
function of interaction strength U=t for different values of the
coupling between the itinerant and localized degrees of freedom.
Left to right: J=U ¼ 0:1, 0.2, 0.4. In all three cases, at weak
coupling, �dc rises as the temperature T is lowered. As for the
spectral weight at the Fermi surface (Fig. 2), this indicates the
weakly correlated band is metallic. For U=t greater than a
critical value, this trend with temperature reverses and the
weakly correlated band undergoes an insulating transition.
ðU=tÞc decreases as J=U increases. The lattice size is 8� 8
and the filling � ¼ 1.
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FIG. 4 (color online). A finite size scaling plot of the anti-
ferromagnetic structure factor shows that for J=U ¼ 0:2 (left
panel), long range order develops for U larger than Uc � 0:5.
For J=U ¼ 0:4 (right panel) there is a smaller Uc � 0:3.
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FIG. 2 (color online). Left panel: The density of states at the
Fermi surface Að! ¼ 0Þ of the weakly correlated orbital is
shown as a function of the interaction U. Below U=t ¼
ðU=tÞcrit � 0:5� 0:1, Að0Þ rises as the temperature is lowered
(� increases), indicative of metallic behavior of the weakly
interacting band. At larger U, the trend is reversed and Að0Þ is
suppressed, signaling insulating behavior. Right panel: the full
frequency dependence of the density of states Að!Þ is shown for
J=U ¼ 0:2. Að!Þ has a maximum at ! ¼ 0 for the weakest
coupling. When U=t ¼ 0:75, a deep suppression of Að!Þ is seen
at the Fermi surface, and the system is fully insulating by the
time U=t ¼ 1:0. In both panels, the lattice is half filled and has
64 sites.
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more precise, and shown that Szzð�;�Þ=N ¼ m2
afm=3þ

a=L, where L ¼ N1=2 is the linear lattice size and mafm is
the AFM order parameter. In Fig. 4 we see that, at J=U ¼
0:2, for small U, less than Uc � 0:5, Szzð�;�Þ=N goes to
zero for large N, while for U above this value there is long
range order.

These results for long range magnetic order are consis-
tent with the transition points observed in our early mea-
surements. For example, in Fig. 3, at J=U ¼ 0:2, when
U ¼ 0:5 (central panel), the system is metallic. When
J=U ¼ 0:4 and U ¼ 0:5 (right panel), in contrast, the
conductivity indicates insulating behavior. As expected,
�dc goes to zero when there is long range AFM order.
Indeed, the size of the gap Umafm which would arise for
electrons of one spin species moving through a staggered
potential due to the other also matches well with the values
seen in Fig. 2 (right). It is important to note that the
interaction term breaks spin rotation invariance, and hence
we have this AFM order only in the z direction. Finite size
scaling of the xy AFM structure factor indicates that the
associated order parameter vanishes for all parameter re-
gimes we have studied.

Conclusions.—The complete ground state phase dia-
gram in the U-J=U plane is shown in Fig. 5. The different
observables, Að! ¼ 0Þ, �dc, and Szzð�;�Þ, all give (to
within our error bars) a common phase boundary which
separates a paramagnetic metallic phase from an insulating
antiferromagnetic one. Generically, one expects the verti-
cal (J=U ¼ 0) axis, which corresponds to the usual
Hubbard model, to be insulating above a critical value
Uc (the Mott transition). Owing to the (logarithmically)
divergent density of states, Uc ¼ 0 for a square lattice.
However, this singularity is broken by a small nonzero J.

Magnetic correlations are known to have an important
interplay with Mott physics both in the single band
Hubbard Hamiltonian, and in the real materials for which

it constitutes simple model. Similarly, in the single impu-
rity and periodic Anderson Hamiltonians, local singlet
formation and longer range AFM order are central phe-
nomena. In this Letter, we have shown that in at least one
model, the orbitally selective Mott transition is accompa-
nied by the formation of a significant amount of intersite
magnetic correlations, and that this inclusion of spatial
fluctuations does not alter the qualitative physics- a set of
itinerant fermions can coexist with a fully localized band.
As with much earlier work [10], we have considered a
simplified model which does not allow the full Hund’s rule
coupling between bands. Simulations with such a term in
place involve the fermion sign problem and cannot at
present be undertaken at low enough temperatures.
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FIG. 5 (color online). The phase diagram of the Hamiltonian
Eq. (1), as determined by the various quantities measured in our
simulation. At weak coupling (small J=U and U=t) there is a
metallic phase.
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