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A modified version of the exchange potential proposed by Becke and Johnson [J. Chem. Phys. 124,

221101 (2006)] is tested on solids for the calculation of band gaps. The agreement with experiment is very

good for all types of solids we considered (e.g., wide band gap insulators, sp semiconductors, and strongly

correlated 3d transition-metal oxides) and is of the same order as the agreement obtained with the hybrid

functionals or the GW methods. This semilocal exchange potential, which recovers the local-density

approximation (LDA) for a constant electron density, mimics very well the behavior of orbital-dependent

potentials and leads to calculations which are barely more expensive than LDA calculations. Therefore, it

can be applied to very large systems in an efficient way.
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In the solid-state community, the vast majority of elec-
tronic structure calculations are done using the Kohn-Sham
equations [1] with the local-density approximation (LDA)
[1,2] or generalized gradient approximation (GGA) [3] for
the exchange-correlation energy and potential. The main
reason is that these (semi)local approximations yield, in
many circumstances, results which are accurate enough to
help interpret experimental data or to have some predictive
power. Another important advantage of semilocal func-
tionals is that they lead to calculations which are computa-
tionally cheap in comparison to more sophisticated
methods. However, the application of LDA and GGA to
solids can also lead, depending on the studied solid and
property, to results which are in very bad agreement with
experiment, e.g., for the band gap of semiconductors and
insulators which is severely underestimated or even absent
(see, e.g., Ref. [4]). More generally, with an orbital-
independent potential (i.e., a potential which is the same
for all orbitals) the band gap calculated from the eigen-
value spectrum differs from the true band gap (the ioniza-
tion potential I minus the electron affinity A) by the
derivative discontinuity of the exchange-correlation poten-
tial �xc [5,6]. Better band gaps can be calculated using
other functionals or methods. The optimized effective
potential (OEP) method applied to the exact exchange
functional usually leads to better band gaps, but strong
underestimations and overestimations can also be obtained
[7,8]. Furthermore, the results of several studies could
indicate that these good results are fortuitous, since apply-
ing the OEP method to the exact exchange plus some
accurate ab initio correlation leads to band gaps similar
to LDA band gaps. The reason is that �xc can be important
(see Ref. [9] and references therein). The hybrid func-
tionals [4,10] can be applied to many classes of solids,
but lead to calculations which are very expensive (albeit
less if a screened version is used). The LDAþU [11]
scheme is computationally as cheap as the semilocal func-
tionals, but can only be applied to localized electrons (e.g.,

3d or 4f) and contains atom-dependent parameters, while
the LDA plus dynamic mean-field theory (LDAþ DMFT)
method is very successful (see, e.g., Ref. [12]), but leads to
significantly more expensive calculations. The GW
method can yield very accurate band gaps (see, e.g.,
Refs. [13–18]), but leads to very expensive calculations,
particularly if done self-consistently [14,18].
Recently [19], we tested an exchange potential proposed

by Becke and Johnson (BJ) [20], which was designed to
reproduce the shape of the exact exchange OEP potential
of atoms. We showed that this potential improves over the
LDA and PBE [3] (the standard GGA for solids) potentials
for the description of band gaps [19]. Nevertheless, the BJ
potential (used in combination with LDA correlation [2])
still underestimates the band gaps significantly, which
means that there is room for improvement.
In this Letter, we present a simple modification of the

original BJ exchange potential which yields band gaps with
an accuracy comparable to approaches which are orders of
magnitude more expensive. The modified BJ potential
(MBJ) we propose is

vMBJ
x;� ðrÞ ¼ cvBR

x;�ðrÞ þ ð3c� 2Þ 1
�

ffiffiffiffiffiffi
5

12

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
2t�ðrÞ
��ðrÞ

s
; (1)

where �� ¼ PN�

i¼1 jc i;�j2 is the electron density, t� ¼
ð1=2ÞPN�

i¼1 rc �
i;� � rc i;� is the kinetic-energy density,

and

vBR
x;�ðrÞ ¼ � 1

b�ðrÞ
�
1� e�x�ðrÞ � 1

2
x�ðrÞe�x�ðrÞ

�
(2)

is the Becke-Roussel (BR) [21] potential which was pro-
posed to model the Coulomb potential created by the
exchange hole. x� [in Eq. (2)] is determined from an
equation involving ��, r��, r2��, and t�, and then b�
is calculated with b� ¼ ½x3�e�x�=ð8���Þ�1=3. Originally,
BJ used the Slater potential vSlater

x;� [22] instead of vBR
x;�, but
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they showed that these two potentials are quasi-identical
for atoms [20]. In Eq. (1), c was chosen to depend linearly
on the square root of the average of jr�j=�:

c ¼ �þ �

�
1

Vcell

Z
cell

jr�ðr0Þj
�ðr0Þ d3r0

�
1=2

; (3)

where � and � are two free parameters and Vcell is the unit
cell volume. Minimization of the mean absolute relative
error for the band gap of the solids listed in Table I leads to

� ¼ �0:012 (dimensionless) and � ¼ 1:023 bohr1=2.
Equation (1) was chosen such that the LDA exchange

potential vLDA
x;� ¼ �ð3=�Þ1=3ð2��Þ1=3 is approximately re-

covered (for any value of c) for a constant electron density.
Indeed, vBR

x;� ’ vSlater
x;� , which reduces to ð3=2ÞvLDA

x;� for a

constant �, while the second term of Eq. (1) [without ð3c�
2Þ] reduces to �ð1=2ÞvLDA

x;� since t� ¼ ð3=20Þð3�2Þ2=3 �
ð2��Þ5=3 for a constant �. For c ¼ 1 the original BJ poten-
tial is recovered [20]. We mention that it was shown in
Ref. [28] that due to the second term in Eq. (1), the BJ
potential reproduces very well the step structure and de-
rivative discontinuity of the exact exchange potential,

which is an important result since only semilocal quantities
are used. The BJ potential was also studied in Ref. [29].
Correlation effects were taken into account by adding a
LDA correlation potential [2] to vMBJ

x;� (MBJLDA); how-

ever, in Ref. [19] we showed that adding LDA correlation
to the BJ potential has a relatively small effect.
Varying c in Eq. (1), we observed that for all studied

solids the band gap increases monotonically with respect to
c, and since the values obtained with c ¼ 1 are for all cases
too small with respect to experiment [19], a larger value for
c leads to better agreement with experiment. More specifi-
cally, for solids with small band gaps, copt (the value of c

which leads to a perfect agreement with experiment) lies
within the range 1.1–1.3, while for large band gaps, copt is

larger (1.4–1.7). Therefore, our goal was to find a property
of the systems which could uniquely define a value for c
close to copt. Such a property could, e.g., be the dielectric

constant, but finally we got inspired by Ref. [30] where it is
proposed to use the expression ! ¼ �jr�j=� for the
parameter ! which defines the separation between short-
and long-range exchange in the screened hybrid functional
HSE [4]. Among the different possibilities we have tried,
Eq. (3) is the one which leads to the most satisfying results.
Note that since vBR

x;� ’ vSlater
x;� and vSlater

x;� is an average of the

Hartree-Fock potential [22], Eq. (1) can be seen as a kind
of ‘‘hybrid’’ potential whose amount of ‘‘exact exchange’’
is given by c.
Table I and Fig. 1 show the results obtained with the

LDA and MBJLDA potentials for the fundamental band
gap of 23 solids. We used the WIEN2K package [31] which
is based on the full-potential (linearized) augmented plane-
wave and local orbitals [FP-ðLÞAPWþ lo] method (see
Ref. [32] and references therein). For comparison pur-

TABLE I. Theoretical and experimental fundamental band
gaps (in eV). The structure is indicated in parenthesis. For
comparison, results from the literature which were obtained
by other methods are also shown (HSE03, HSE06, G0W0, and
GW). The experimental values were taken from
Refs. [4,7,10,14,18,23–26].

Solid LDA MBJLDA HSE G0W0 GW Expt.

Ne (A1) 11.42 22.72 19.59e 22.1g 21.70

Ar (A1) 8.16 13.91 10.34a 13.28e 14.9g 14.20

Kr (A1) 6.76 10.83 11.6

Xe (A1) 5.78 8.52 9.8

C (A4) 4.11 4.93 5.49b 5.50e 6.18g 5.48

Si (A4) 0.47 1.17 1.28b 1.12e 1.41g 1.17

Ge (A4) 0.00 0.85 0.83b 0.66f 0.95g 0.74

LiF (B1) 8.94 12.94 13.27e 15.9g 14.20

LiCl (B1) 6.06 8.64 9.4

MgO (B1) 4.70 7.17 6.67b 7.25e 9.16g 7.83

ScN (B1) �0:14 0.90 0.95f 1.4h �0:9
MnO (B1) 0.76 2.95 2.8c 3.5i 3:9� 0:4
FeO (B1) �0:35 1.82 2.2c 2.4

NiO (B1) 0.42 4.16 4.2c 1.1f 4.8i 4.0, 4.3

SiC (B3) 1.35 2.28 2.40b 2.27e 2.88g 2.40

BN (B3) 4.39 5.85 5.99b 6.10e 7.14g �6:25
GaN (B3) 1.63 2.81 3.14b 2.80e 3.82g 3.20

GaAs (B3) 0.30 1.64 1.12b 1.30e 1.85g 1.52

AlP (B3) 1.46 2.32 2.51b 2.44e 2.90g 2.45

ZnS (B3) 1.84 3.66 3.49b 3.29e 4.15g 3.91

CdS (B3) 0.86 2.66 2.25b 2.06e 2.87g 2.42

AlN (B4) 4.17 5.55 5.81b 5.83f 6.28

ZnO (B4) 0.75 2.68 2.49d 2.51f 3.8g 3.44

aHSE06, erratum of Ref. [10].
bHSE03, supplementary material of Ref. [4].
cHSE03 [26]. dHSE06 [27]. eReference [17]. fReference [15].
gReference [18]. hReference [16]. iReference [14].
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FIG. 1 (color online). Theoretical versus experimental band
gaps. The values are given in Table I (Ne is omitted).
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poses, experimental [4,7,10,14,18,23–26], HSE (HSE03 or
HSE06) [4,10,26,27], and GW results are also given. For
GW, we list all-electron non-self-consistent (G0W0)
[15,17] and self-consistent (GW) [14,16,18] results. Our
results as well as most of the literature theoretical results
were obtained at the experimental geometry. Note that
among the considered solids there are not only simple sp
semiconductors, but also rare-gas solids (from Ne to Xe)
with band gaps up to 22 eV and the antiferromagnetic
MnO, FeO, and NiO whose 3d electrons are strongly
correlated. We can see that for most cases the MBJLDA
potential yields band gaps which are in (very) good agree-
ment with experiment leading to typical errors of less than
10%. For instance, for Ge and ScN the band gaps of 0.85
and 0.90 eVare obtained, respectively, in very good agree-
ment with experiment (0.74 and 0.9 eV). For medium-size
band gaps, very good agreement with experiment is ob-
tained for SiC, ZnS, CdS, and AlP with errors smaller than
0.25 eV. We also note the good results obtained for the rare-
gas solids, LiF, and LiCl which have very large band gaps.
Among the 23 considered solids only MnO, FeO, and ZnO
have relative errors larger than 15%. Note, however, that
FeO is metallic with LDA.

A comparison with other theoretical methods shows that
for solids with small- or medium-size band gaps, the HSE
hybrid method leads to rather similar results. For larger
band gap systems HSE is more accurate for C and BN,
while the MBJLDA results are much closer to experiment
for Ar and MgO. The trend of the G0W0 method is to
underestimate band gaps (in particular for NiO, GaN,
ZnS, CdS, and ZnO), while the self-consistent GW band
gaps are slightly too large compared to experiment, with
errors of similar magnitude than with MBJLDA. Overall,
the semilocal MBJLDA potential leads to results that are of
similar accuracy as other much more sophisticated theo-
ries, which are computationally orders of magnitude more
demanding. We have not reviewed the many non-self-
consistent G0W0 calculations based on the pseudopotential
approach, although they often lead to very accurate results,
since this scheme may benefit from some cancellation of
errors. It seems that only when electron-hole interactions in
self-consistent GW calculations are taken into account,
further systematical improvement can be achieved [18].

We also compared the full band structures of Si and
GaAs. With respect to the LDA eigenvalues, the MBJLDA
eigenvalues for Si are shifted upwards by 0.1–0.3 eV for the
occupied states and 0.5–1 eV for the unoccupied states, and
for the states where the experimental data are reliable (see
Ref. [13] for a compilation of experimental values), the
MBJLDA potential brings the eigenvalues closer to the
experimental values than LDA does. For instance, for the
state �20c, LDA gives 3.17 eV, while MBJLDA gives
4.34 eV (4.1–4.2 eV for experiment). While for Si the shift
is rather uniform in k space, for GaAs it is not. For
instance, MBJLDA shifts up the �1c, X1c, and L1c states
by 1.34, 0.71, and 0.95 eV with respect to LDA. This yields
MBJLDA eigenvalues of 1.64, 2.06, and 1.80 eV, which

compare very well with the experimental values of 1.52,
1.90, and 1.74 eV [13].
For MnO, FeO, and NiO, LDAþU calculations were

also done (with U and J given in Ref. [11]). From Fig. 2,
which shows the density of states (DOS) of NiO, we can
see that the effect of the LDAþU and MBJLDA poten-
tials is to shift up (with respect to LDA) the unoccupied Ni
3d states. For theMBJLDA potential this shift leads to very
good agreement with photoelectron spectra [25]. However,
three major differences between the on-site LDAþU and
MBJLDA methods can be noticed. (a) Since the MBJLDA
potential is applied to all electrons, the tail in the unoccu-
pied LDAþU DOS which is just below the Ni 3d peak
(mainly of Ni 4s character) is absent in the MBJLDADOS.
(b) The ‘‘lower Hubbard band’’ of dominant Ni 3d char-
acter at the bottom of the valence band is very weak in
MBJLDA calculations (note that in experiment [33] and
LDAþ DMFT calculations [12] this band is also rather
weak). (c) The Mott-Hubbard character of NiO is much
more pronounced with the MBJLDA than with LDAþU,
but MBJLDA still leads to an appreciable amount of O 2p
states at the top of the valence bands. Recently, NiO has
been experimentally described as a mixed Mott-
Hubbard–charge-transfer insulator [33]. From Fig. 2, we
can also see that the Ni 3d and O 2p DOSs obtained with
the MBJLDA potential agree very well with the Ni and O
spectra obtained from x-ray-emission spectroscopy (XES)
measurements [33], while the Ni 3d DOS obtained with
LDAþU shows a completely different structure. For
MnO and FeO, the structure of the DOS is in better
agreement with experiment with LDAþU and
MBJLDA, respectively, and we note that for these two
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FIG. 2 (color online). DOS of NiO. The vertical bars indicate
the end of the fundamental band gap which starts at E ¼ 0 eV.
The panels labeled ‘‘Expt.’’ show photoelectron [25] (upper
panel) and XES [33] [lower panel, Ni (solid line) and O (dashed
line) spectra] measurements.
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compounds the two methods lead to similar lower Hubbard
bands (unlike in NiO). We also mention that LDAþU and
MBJLDA potentials open a band gap (2.52 and 2.69 eV) in
ferromagnetic NiO (with broken symmetry), while LDA
does not; thus, we expect the MBJLDA potential to open
also a band gap in paramagnetic NiO. The atomic spin
magnetic moments obtained with the LDAþU and
MBJLDA methods are very similar. These two methods
lead to moments of 4.54 and 4:51�B for MnO, 3.64 and
3:63�B for FeO, and 1.74 and 1:75�B for NiO. These
values are much larger than the LDA values (4.23, 3.38,
and 1:21�B for MnO, FeO, and NiO), and hence in much
better agreement with experiment (see Ref. [34] for a
compilation of experimental values).

We mention that since there is no exchange functional
Ex such that v

MBJ
x;� ¼ �Ex=���, we recommend to use first

a modern GGA functional for the structural properties, and
then to use the MBJLDA potential for the calculation of the
band structure.

As mentioned above, only orbital-dependent potentials
are in principle able to yield orbital band gaps; thus, the
good results obtained with the MBJLDA potential could be
considered as a surprise. However, we would like to stress
that our intention was not to find a good approximation to
the exact orbital-independent Kohn-Sham potential, but
instead a potential which tries to mimic the behavior of
orbital-dependent potentials. This is in principle feasible
since the overlap between the occupied and unoccupied
orbitals around the band gap is usually small, and thus an
orbital-independent potential could catch the essentials of
orbital-dependent potentials.

In summary, we have obtained very accurate band gaps
of semiconductors and insulators with an orbital-
independent exchange-correlation potential which depends
solely on semilocal quantities. To our knowledge, this is
the first semilocal potential that is able to compete in
accuracy with the expensive hybrid and GW methods.
The proposed potential leads to calculations of the band
structure which are as cheap as LDA or GGA and thus can
be applied to very large systems in an efficient way, which
is certainly not possible with the hybrid or GW methods.

This work was supported by the project P20271-N17 of
the Austrian Science Fund.
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