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We consider a 2D Yukawa lattice of grains, with a beam of other charged grains moving in the lattice

plane. In contrast to Vlasov plasmas, where the electrostatic instability excited by the beam is only

longitudinal, here both longitudinal and transverse instabilities of the lattice phonons can develop. We

determine and compare the transverse and longitudinal growth rates. The growth rate spectrum in wave

number space exhibits remarkable gaps where no instability can develop. Depending on the system

parameters, the transverse instability can be selectively excited.
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When a charged particle beam penetrates an equilibrium
plasma, an electrostatic instability ensues because of the
feedback between the two systems, carried by their respec-
tive collective modes. These beam-plasma instabilities
(BPI) have been studied and well understood for a long
time for weakly coupled (Vlasov) plasmas [1,2]. Recently,
the question of how strong coupling affects the behavior of
the BPI, as well as of the related two-stream instability
(e.g., [3]) has arisen in relation to strongly coupled dusty
(complex) plasmas. A preliminary study of some of the
issues involved has been given in [4]. Several experiments
have already explored the effect of externally driven (by a
laser beam, for example) particles moving across a plasma
crystal. In these experiments amongst other things, the
excitation of Mach cones [5], etc., were observed. How-
ever, in all these cases, there were only a few individually
driven particles: i.e., the essential feature of a coherent
beam, with its own collective mode that can couple to the
lattice modes, was absent. In the experiment of [6], two
counterstreaming half-lattices were generated, ultimately
causing the lattice to melt: whether this may be attributed
to a two-stream instability is an open question. This Letter
addresses a scenario of a two-dimensional (2D) triangular
lattice of highly charged grains, penetrated by a weakly
coupled, �b ¼ ðZbeÞ2=ðabTbÞ< 1, tenuous beam of
small, heavy grains, with a thermal energy spread Tb; the
weak interaction between the beam and the lattice is en-

sured by the lattice (nominal) plasma frequency �p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðZleÞ2nl=mlal

p
being well above the similarly defined

!p of the beam [a ¼ ð�nÞ�1=2 is the Wigner-Seitz radius,

and n is the areal density of the particles; system parame-
ters pertaining to the plasma (lattice) are indicated by
subscript l, and to the beam by subscript b]. Both the
lattice and the beam are immersed in a polarizable plasma
background; thus, the interaction between the particles
(both lattice and beam) is taken to be governed by a
Yukawa potential with a screening parameter �,
ZAZBe

2�ðrÞ, �ðrÞ ¼ ð1=rÞe��r.

Compared to the BPI in a weakly coupled plasma, the
interaction of the beam with a strongly coupled lattice
brings new physical effects into play: (i) coupling between
longitudinal and transverse polarizations that would allow
the excitation of transverse electrostatic instabilities; (ii) an
anisotropic growth rate spectrum of the instabilities;
(iii) sensitivity to the direction of the beam injection; and
(iv) the emergence of gaps in the excitation spectrum. It
should be noted that the transverse polarizations discussed
here are of electrostatic origin, induced by correlations, to
be distinguished from transverse electromagnetic instabil-
ities [7] induced by magnetic interaction, which would be
much weaker than the ones discussed here.
The goal is now to find the unstable eigenmodes of the

coupled beam-lattice system and to use the beam reso-
nance condition between the Doppler shifted beam fre-
quency and one of the lattice modes to determine the
domain of wave vectors where they can be excited. In
order to study the interaction of a plasma beam with a
lattice, we need a formalism that can be adapted to both
systems. The Quasi Localized Charge Approximation
(QLCA) (for details of the formalism see [8]) has this
capability: it describes the system through the collective
coordinates �

�
k and �

�
k , the displacements of the ith par-

ticle in the lattice as well as in the beam, respectively, from
their equilibrium (for the lattice) or quasiequilibrium (for
the beam) positions [9],

��
i ¼ X

k

��
ke

ik�xi ; ��
i ¼ X

k

��
ke

ik�xi : (1)

The interaction between the collective coordinates is rep-
resented byD��ðkÞ, the dynamical matrix whose construc-

tion for the lattice as a sum over the lattice sites and for the
beam by following the QLCA technique is well-known
(see, e.g., [8,10]). The condition �b < 1 implies that the
beam supports a longitudinal mode only and that the
interaction within the beam and between the beam and
the lattice is through the mean field only: then the funda-
mental equations for the coupled beam-lattice system be-
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Here, �0ðkÞ is the frequency of the Vlasov (RPA) plasma
mode of the lattice, and !0ðkÞ is the Vlasov plasma mode
of the beam,

�2
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�k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2 þ ��2
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(3)

where �k ¼ ka, �� ¼ �a, and v is the beam velocity. The
eigenmodes of the unperturbed (triangular) lattice are
the quasilongitudinal (L) and quasitransverse (T) pho-
nons �LðkÞ and �TðkÞ (see inset to Fig. 3), the roots of
kD�!2Ik � �ð!Þ ¼ 0 [11,12]. These modes are longi-
tudinal and transverse only for directions of propaga-
tion along the principal axes of the lattice (0� and 30�);
in general, the polarizations are mixed, although for small
k values, the respective longitudinal and transverse po-
larizations prevail. We seek solutions of (2) for �mðkÞ �
!� k � v in the vicinity of the unperturbed phonon fre-
quencies ! � �mðkÞ þ �mðkÞ (m ¼ L, T) in conjunction
with the beam-plasma resonance condition

�mðkÞ ¼ k � v: (4)

The characteristic equation representing (2) in the
k-coordinate system (where the 1 axis is along k and the
2 axis is perpendicular to k), is

ð!2
0 � �2Þ�ð!Þ �!2

0�
2
0ð �D22 �!2Þ ¼ 0: (5)

Here, �Dð’Þ ¼ Rð’ÞDRTð’Þ is obtained by rotation from
the frame where the axes coincide with the symmetry axes
of the crystal (where the conventionally defined dynamical
matrix D is obtained) into the k-coordinate system: ’ is
the angle between k and the x axis. Equation (5) can now
be expanded in the vicinity of �ð!Þ ¼ 0 as

�mð!2
0 � �2

mÞ@�ð!Þ
@!

��������!¼�m

¼ !2
0�

2
0ð �D22 ��2

mÞ: (6)

The two growth rates �L;T [associated with the respective L
(upper sign) and T (lower sign) modes] are the imaginary
parts of the complex solutions of (5), which then satisfy

�mð!2
0��2

mÞ¼!2
0�

2
0Fm; Fm¼ð �D22� �D11Þ�

ffiffiffi
S

p

�4�m

ffiffiffi
S
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with the invariant S

S¼ ð �D11 � �D22Þ2 þ 4 �D12
�D21 ¼ ðD11�D22Þ2 þ 4D12D21:

(8)

Understanding the properties of the cubic Eq. (7) is crucial
in analyzing the instabilities. Its central feature is the
formation of regions where there is no solution for �m.

Whether this happens is contingent upon the sign of the
discriminants

�m ¼ 27

4

F2
m�

4
0

!2
0

� 1: (9)

When � is negative, the cubic equation has three distinct
real roots, while when� is positive, it has one real root and
a pair of complex conjugate roots. Thus, in the domains of
k and’where�< 0, no unstable solutions exist, resulting
in gaps in the spectrum of �L;Tðk; ’Þ. These forbidden

regions are shown in Fig. 1. For the T mode, they develop

FIG. 1 (color online). �Lðk; ’Þ and �Tðk; ’Þ as imaginary parts
of the complex solutions of (7), for angle ’ ¼ 10� and �� ¼ 2
[the resonance condition (4) has not yet been applied]. The solid
line depicts the case with no linear term in (7) and, consequently,
with no gap. The short-dashed lines show the cases !p=�p ¼
0:018 and the long-dashed for !p=�p ¼ 0:18. The width of the

gap grows with increasing !p=�p.

FIG. 2 (color online). Growth rates �Lðk; ’Þ and �Tðk; ’Þ, as
solutions of (7), for various angles ’, for !p=�p ¼ 0:018 and

�� ¼ 2 [the resonance condition (4) has not yet been applied]. As
expected, there is no transverse growth rate when k is along the
principal axes of the triangular lattice, i.e., when ’ ¼ 0� or 30�.
Note that the ’ ¼ 10� graph is also shown in Fig. 1.
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for small k values or in the vicinity of the principal axes of
the crystal lattice where the two polarizations do not mix
much, while for the Lmode, they are in the regions of high
polarization mixing. Should the linear term in (7) be
ignored, its solution would be greatly simplified. The
discriminant in that case would be always positive, and
no gaps would exist. This is the case in the usual weak
coupling (Vlasov) approximation. In reality, the coefficient
of the linear term is of the order of ð!p=�pÞ2. Figure 1

shows how the increase of this parameter affects one of the
typical solutions of (7), shown in Fig. 2. The solutions
�mðk; ’Þ portray the evolution of the growth rate over the
entire k space: however, an additional constraint is im-
posed by the beam resonance condition [with V ¼
v=ð�palÞ the dimensionless beam velocity and 	 its angle

of incidence with respect to the x axis]

�mðk; ’Þ=�p ¼ �kV cosð’� 	Þ (10)

which determines the frequencies �mð’;V; 	Þ and the
wave numbers kmð’;V; 	Þ in the vicinity of which the
instabilities are generated. The resonance construction is
demonstrated in the inset of Fig. 3. Physical solutions result

only from portions of the curves that fall outside the shaded
forbidden regions. Without loss of generality, 0< 	< 30�
can be assumed, but ’ has to run over all the (now
inequivalent) Brillouin zones, 0<’< 180�. Depending
on the value of V (in relation to sL and sT , the longitudinal
and transverse acoustic speeds, in the same units), and 	,
there are three different physical situations, as portrayed in
the diagram: (i) V > sL, (ii) sL > V > sT , (iii) sT > V.
Each of them corresponds to a different morphology of
the kmð’;V; 	Þ locus in the (k, ’) plane: some typical
structures are shown in Fig. 3. It can also be observed
that in order to excite instabilities in the physically most
interesting small k regions, V > sL is required. On the
other hand, one can selectively excite small k transverse
instabilities by choosing sL > V > sT . The final construc-
tion of the growth rates as functions of the wave number k,
�mðk;V; 	Þ, emerges from the combination of (7) and (10).
Typical results corresponding to the different scenarios
shown in the inset of Fig. 3 are given in Fig. 4; the direction
into which the instability is excited, ’mðk;V; 	Þ, can be
read off from the loci in Fig. 3.
The labels L and T, as pointed out above, only identify

the modes, but do not represent actual longitudinal or
transverse polarizations. Both of the L and T polarization
vectors êL, êT , can, however, be decomposed into their
longitudinal and transverse components; it is the weights of
these decompositions in conjunction with �L;Tðk;V; 	Þ that
ultimately determine the actual growths of the longitudinal

and transverse electric fields. Such projections, ðk̂ � êmÞ2,
[1� ðk̂ � êmÞ2], for a typical growth rate scenario are
shown in Fig. 5.
To see whether experiments to study the BPI discussed

in this Letter would be feasible, one has to reconcile:
(1) !0=�0 < 1 and �b � 1 requiring low beam density

FIG. 3 (color online). Polar diagrams showing loci in the k
plane where instabilities can occur, as functions of V and 	, for
�� ¼ 2. The left (right) panels pertain to the longitudinal (trans-
verse) instabilities and the upper (lower) panels to 	 ¼ 0� (	 ¼
30�). The four curves from right to left in each panel correspond
to speeds V ¼ 0:1, 0.2, 0.3, 0.5. The shaded areas of the back-
ground show the locations of the gaps. When the loci fall within
the gaps, no acceptable solutions exist for �L;T . The inset shows

the resonance construction for three different values of V in
relation to sL ¼ 0:16 and sT ¼ 0:41 [16].

FIG. 4 (color online). Growth rates �LðkÞ and �TðkÞ as solu-
tions of (7), with the resonance condition (10) satisfied, for vari-
ous beam speeds V, for !p=�p ¼ 0:018, �� ¼ 2, and 	 ¼ 0�.
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and beam grains of large mass, (2) beam grains of low
kinetic energy (i.e., small mass) in order to minimize
effects due to two-body collisions between beam and
lattice particles, and (3) low neutral density to ensure small
damping caused by grain-neutral collisions. We adopt
nominal plasma parameters taken from complex plasma
experiments (e.g., [13]), namely, argon gas of pressure
	1 Pa near room temperature, ion density ni 	 3

108 cm�3, and electron temperature Te 	 1 eV. For the
lattice, we consider grains of radius Rl 	 3 �m (grain
charge ql 	�5200e and using Orbit Motion Limited the-
ory, assuming Te � Tl, and a grain surface potential of
about �2:5Te=e [14]), mass density 	1:5 g=cm3, al 	
200 �m, and Tl near room temperature. For the beam
grains, we consider small radius Rb 	 0:1 �m (beam grain
charge qb 	�175e), large mass density	19 g=cm3, large
ab 	 1 mm and Tb near room temperature. This yields the
following dimensionless parameters: �l 	 6500, ��	 0:5,
�b < 1, and !p=�p 	 13=96	 0:14< 1 (!0=�0 	
0:3< 1). Estimating the grain-neutral collision frequency
� by using the hard-sphere collision rate (see, e.g., [15]),
we find �l=�p 	 0:6=96 � 1 for the lattice, and �b=!p 	
1:4=13 � 1 for the beam. With the above parameters, we
estimate the longitudinal and transverse sound speeds for

the lattice [16,17] as sL & �pal=
ffiffiffiffi
��

p 	 3 cm=s and sT &

�pal=4	 0:5 cm=s, respectively. Thus, a dust beam with

speed v	 2 cm=s could excite a transverse instability,
since sT > v > sL. The directed dust beam energy would

be 	0:2 eV, much smaller than the electrostatic energy
between neighboring lattice grains, 	120 eV, indicating
the beam may not affect the lattice much via two-body
collisions. As to the generation of a dust beam, dust could
be accelerated external to the plasma (e.g., by neutral drag)
and injected into the plasma. Another possibility may be
selective acceleration of nanoparticles by radiation pres-
sure (e.g., [18]). The beam may also be injected above or
below the lattice plane to reduce collisional effects.
In summary, we have analyzed the excitation of unstable

modes in a 2D lattice of charged grains penetrated by a
weak beam.We have identified novel physical effects, such
as the selective excitation of transverse instabilities, a gap
in k space and a pronounced anisotropy of the spectrum of
the unstable modes, and the sensitivity to the beam injec-
tion direction with respect to the principal axes of the
lattice. Estimates show that experiments to study these
effects should be feasible; they may provide a way to study
unexplored phonon spectra arising in more complex situ-
ations (binary mixture, bilayers).
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FIG. 5 (color online). Growth rates �L and �T , as solutions of
(7), with the resonance condition (10) satisfied, at angles 	 ¼ 0�
and 30� for V ¼ 0:4, !p=�p ¼ 0:018, and �� ¼ 2. An example

of how the transverse weight is distributed between �LðkÞ and
�TðkÞ is shown in the bottom part of each panel, where the
transverse weight 1� ðk̂ � êÞ2 of the respective polarization
vectors êL, êT is portrayed, as a function of k, for 	 ¼ 0�.
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