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We investigate the spatiotemporal structure of the biphoton entanglement in parametric down-

conversion (PDC) and we demonstrate its nonfactorable X-shaped geometry. Such a structure gives

access to the ultrabroad bandwidth of PDC, and can be exploited to achieve a biphoton temporal

localization in the femtosecond range. This extreme localization is connected to our ability to resolve

the photon positions in the source near field. The nonfactorability opens the possibility of tailoring the

temporal entanglement by acting on the spatial degrees of freedom of twin photons.
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Parametric down-conversion (PDC) is probably the most
efficient and widely used source of entangled photon pairs
which have been employed in several successful imple-
mentations of quantum communication and information
schemes. At the very heart of such technologies lies the
quantum interference between photonic wave functions,
which depends crucially on the spatiotemporal mode struc-
ture of the photons. In this work, the issue of controlling
and tailoring the biphoton spatiotemporal structure is ad-
dressed from a peculiar and novel point of view, that is, the
nonfactorability in space and time of the PDC biphoton
entanglement. The idea comes from the context of non-
linear optics, where recent studies [1] outlined how in
nonlinear media the angular dispersion relations impose a
hyperbolic geometry involving both temporal and spatial
degrees of freedom in a nonfactorable way. The wave
object that captures such a geometry is the so-called X
wave, which is a localized and propagation-invariant wave
packet, nonseparable in space and time. The statistical
counterpart of the X wave was shown [2] to emerge in
the X-shaped structure of the coherence function, describ-
ing the classical phase coherence of the individual signal
(idler) field.

In this Letter, we turn our attention to the genuine
quantum level, investigating the spatiotemporal structure
of the biphoton cross correlation, the quantity that is at the
heart of the photon-pair PDC entanglement. We shall
demonstrate that an X geometry emerges in this micro-
scopic context as well. With few exceptions [3,4], the PDC
entanglement has been, to date, investigated mostly either
in a purely temporal [5–7] or spatial [8–10] framework.
Our approach, based on the nonfactorability in space and
time of the state, will point out a key element of novelty,
i.e., the possibility of tailoring the temporal bandwidth of
the biphotons by manipulating their spatial degrees of
freedom. In particular, by resolving their near-field posi-
tions, we will show that the X structure opens the access to
an ultrabroad bandwidth entangled photonic source, with a
temporal localization in the femtosecond range. Such an
extreme localization can be used to increase the sensitivity
of high-precision measurements, e.g., in the protocol of

clock synchronization [11] or of quantum optical coher-
ence tomography [12]. Our results compare with recent
findings [13], where a �7 fs Hong-Ou-Mandel dip was
observed through the use of a quasi-phase-matched non-
linear grating.
We shall focus on type I PDC, in the low-gain (coinci-

dence count) regime. We remark that the X structure of
entanglement is a general feature of PDC, present also in
type II and in the high-gain regime [14]. The model is
basically the same as in [4,10]. A quasimonochromatic and
coherent pump field propagates along the direction z inside

a slab of nonlinear �ð2Þ crystal of length lc. Âpðx; t; zÞ,
Âsðx; t; zÞ denote the envelope operators of the pump
and the down-converted signal field of central frequencies
!p and !s ¼ !p=2, respectively. Here x ¼ ðx; yÞ
labels the transverse coordinates, while t is time. We next

pass to the Fourier domain: Âiðq; !; zÞ ¼ R
d2x
2� �R

dtffiffiffiffiffi
2�

p Âiðx; t; zÞe�iq�xþi!t, i ¼ s; p, and extract the fast

variation due to their linear propagation along the crystal
slab:

Â iðq; !; zÞ ¼ eikizðq;!Þzâiðq; !; zÞ; i ¼ s; p; (1)

where kizðq; !Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i ðq; !Þ � q2

q
is the z component of

the wave vector of the ith field, kiðq; !Þ being the wave
number at frequency !, which depends on the transverse
wave vector q only for the extraordinary wave. The fields
âi defined in this way have a slow variation along the
crystal, arising only from the nonlinear interaction. In the
low-gain regime we can assume that the pump is unde-
pleted by the nonlinear interaction [ d

dz âpðq; !; zÞ ¼ 0] and

substitute its field operator by a c-number field �pðq; !Þ,
so that the pump evolution along the crystal is described by

Apðq; !; zÞ ¼ eikpzðq;!Þz�pðq; !Þ. For the signal field, its

propagation along the crystal is described by [4]

@âsðq; !; zÞ
@z

¼ g

lc

Z d2q0

2�

Z d!0ffiffiffiffiffiffiffi
2�

p ½�pðqþ q0; !þ!0Þ

� âys ðq0; !0; zÞe�i�ðq;!;q0;!0Þz�; (2)
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where g is the dimensionless parametric gain, proportional

to the second-order �ð2Þ susceptibility, to the crystal length
lc and to the pump peak value (the pump field has been
normalized to its peak value). The phase-mismatch func-
tion

�ðq; !;q0; !0Þ ¼ kszðq; !Þ þ kszðq0; !0Þ
� kpzðqþ q0; !þ!0Þ (3)

determines how efficiently a pump photon with transverse
wave vector qþ q0 and frequency !p þ!þ!0 is down-
converted into a pair of photons with transverse wave
vectors q;q0 and frequencies!s þ!;!s þ!0: the smaller
its modulus, the higher the probability that such an ele-
mentary process occurs.

In most experiments in the low-gain regime, the quantity
of primary interest is the two-photon correlation, also
called biphoton amplitude. We shall study this quantity
in the spatiotemporal domain, in a plane at the output face
of the crystal (near-field plane); that is, we focus on

c ðx; t;x0; t0Þ ¼ hÂsðx; t; lcÞÂsðx0; t0; lcÞi: (4)

In the low-gain limit its square modulus jc ðx; t;x0; t0Þj2 is
proportional to the two-photon coincidence rate

Gð2Þðx; t;x0; t0Þ, which gives the joint probability distribu-
tion of finding two photons in position x at time t and
position x0 at time t0, respectively.

For small gains (g � 1), the propagation equation (2)
can be solved perturbatively up to first order in g, obtaining
the following expression for the biphoton amplitude in the
Fourier domain:

hÂsðq1; !1; lcÞÂsðq2; !2; lcÞi
¼ ð2�Þ�3=2gApðq1 þ q2; !1 þ!2; lcÞ

� ei�ðq1;!1;q2;!2Þlc=2 sinc
�
�ðq1; !1;q2; !2Þlc

2

�
: (5)

In the literature the same quantity is usually derived
through a perturbative evaluation of the two-photon state
vector (see, e.g., [3]).

In order to simplify our results, we consider the limit of a
nearly plane wave and monochromatic pump, i.e., a pump
of waist wp and duration �p large enough, so that the

dependence of the phase mismatch� on q1 þ q2 and!1 þ
!2 (the pump variables) can be neglected. It can be shown
[14] that such an approximation holds when wp and �p are

much larger than the spatial walk-off and the temporal
delay due to group velocity mismatch, respectively, expe-
rienced by the signal and the pump after crossing the
crystal. Typical values are �300 �m and �2 ps, as in
the example of a 4 mm �-barium-borate (BBO) crystal
cut for degenerate type I PDC at 352 nm. Provided that
such conditions hold, the biphoton amplitude (4) at the
crystal output takes the factorized form

c ðx;t;x0; t0Þ¼Ap

�
xþx0

2
;
tþ t0

2
;lc

�
c pwðx�x0;t� t0Þ;

(6)

where

c pwð�; �Þ ¼
Z d2q

ð2�Þ2
Z d!

2�
eiq���i!�Vðq; !Þ (7a)

Vðq; !Þ ¼ gei�pwðq;!Þlc=2 sinc
�
�pwðq; !Þlc

2

�
; (7b)

�pwðq; !Þ ¼ kszðq; !Þ þ kszð�q;�!Þ � kpð0; 0Þ (7c)

is the plane-wave pump result for the field correlation
function. The pump beam profile Ap acts thus as a slow

modulation over the plane-wave pump correlation c pw that

depends only on the relative coordinates � ¼ x� x0, � ¼
t� t0, as it can be expected in the nearly stationary and
homogeneous conditions considered here.
A first qualitative insight into the problem can be ob-

tained by considering the usual quadratic expansion of the
phase-matching function, equivalent to adopting the par-
axial and quadratic dispersion approximations. In the case
of e-oo phase matching, it takes the form [4]:

�pwðq; !Þlc � �0 þ !2

�2
0

� q2

q20
; (8)

where �0 ¼ ð2ks � kpÞlc is the collinear phase mismatch

at degeneracy, �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=k00s lc

p
, q0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
ks=lc

p
, and we used

the shorthand notation ks ¼ ksð0; 0Þ, kp ¼ kpð0; 0Þ, k00s ¼
d2ks=d!

2j0;0. If we extend the validity of such an approxi-
mation to the entire ðq; !Þ domain, and we use the identity

eip=2 sincðp=2Þ ¼ R
1
0 dse

isp, the biphoton amplitude

c pwð�; �Þ can be recast in the integral form:

c pwðr; �Þ ¼ g
q20�0

8
ffiffiffiffiffiffiffiffi
�3i

p
Z 1

0

ds

s3=2
eði=4sÞðq20r2��2

0
�2Þeis�0 ; (9)

where r ¼ j�j indicates the radial coordinate. This expres-
sion clearly evidences the hyperbolic geometry of
c pwðr; �Þ: the function is indeed constant on the rotational

hyperboloids where the argument

Hðr; �Þ � q20r
2 ��2

0�
2 (10)

assumes constant values. However, it can be easily shown

that c pwðHÞ goes as 1=
ffiffiffiffiffiffiffijHjp

for jHj ! 0, that is, when

approaching the asymptotes of the X structure, where
Hðr; �Þ ¼ q20r

2 ��2
0�

2 ¼ 0. This singularity arises from

the unphysical assumption that the approximation (8) is
valid everywhere.
In order to obtain quantitative results we need therefore

to go beyond the paraxial and quadratic dispersion approx-
imations in the evaluation of �ðq; !Þ and drop the approx-
imation (8). c pwð�; �Þ, defined by Eq. (7), is hence numeri-

cally calculated by using the complete Sellmeier relations
[15] for the refractive indexes. An example of our results is
shown by Fig. 1 for the case of a type I BBO crystal. Since
the signal is an ordinary wave, the spatial radial symmetry
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of the problem can be exploited to compute Eq. (7) by
means of a Fourier-Hankel transform. Correspondingly,
the biphoton amplitude c pw depends only on the radial

coordinate j�j. A cut of this function in the ð�x; �Þ plane is
displayed in Figs. 1(a) and 1(b) (the whole three-
dimensional plot has a radial symmetry in space, and
shows a biconical geometry). A clear X-shaped structure
emerges: this nontrivial shape of the spatiotemporal two-
photon correlation, that we shall call X entanglement, can
be considered the counterpart, at the quantum level, of the
nonlinear X waves [1]. Similar results hold for a variety of
phase-matching conditions and crystal lengths [14].

A remarkable characteristic of the X entanglement is the
unusually small width of the spatiotemporal correlation
peak, which corresponds to a strong relative localization
of twin photons both in time and space. The two lower
frames of Fig. 1 plot cuts of the two-photon coincidence
rate jc pwj2 along the temporal and spatial axis, respec-

tively. The relative spatial localization is remarkable but
not impressive, as displayed in Fig. 1(d) by the � ¼ 0
spatial profile, which has a FWHM of �2:9 �m. More
impressive, and, in a sense, unexpected, is the relative
localization in time of twin photons, which can be appre-
ciated from the temporal profile jc pwð0; �Þj2 in Fig. 1(c),

which is as narrow as 4.4 fs. Such an ultrashort two-photon
localization emerges spontaneously from a nearly mono-
chromatic pump, as a consequence of the ultrabroad band-
width of PDC phase matching, which in principle extends
over the optical frequency !p � 5� 1015 Hz. Notice that,

in order to account for, e.g., the finite bandwidth of detec-
tion, in our calculations we include a super-Gaussian fre-
quency filter centered at degeneracy. The 4.4 fs width of the
temporal peak is in practice determined by the width of this
frequency filter (see Fig. 2 for a comparative view of the
bandwidths involved).
It is interesting to compare our results with the typical

�100 fs temporal localization of the coincidence rate
measured in the far-field zone, by collecting twin photons
that propagate at symmetric directions q and �q, within a
small angular bandwidth. In that case, the measured quan-
tity is proportional to jVðq; �Þj2 ¼ jR d!

2� e
�i!�Vðq; !Þj2.

Its temporal width is determined by the inverse of the
bandwidth of the spectrum Vðq; !Þ at fixed q, i.e., the
narrow (1013–1014 Hz) thickness of the curve in Fig. 2.
This bandwidth can be roughly evaluated as �0 for
q=q0 � 1, and as �0q0=q for q=q0 > 1. Clearly, since

�0 scales as l�1=2
c , the shorter the crystal, the stronger

the temporal localization in the far field; however, a far-
field localization in the femtosecond range would require a
crystal as short as�50 �m, with a strongly reduced down-
conversion efficiency. Conversely, in our case, the detec-
tion of coincidences in the near field gives in principle
access to the full (�1015 Hz) bandwidth of phase matching
even for a long crystal.
It is, however, important to stress that such an extreme

temporal localization of twin photons relies on the ability
to resolve their relative position in the near-field plane.
Indeed, a measurement collecting all the photons over the
beam cross section, without discriminating their positions,
is characterized by the integrated coincidence rateR
d2�jc pwð�; �Þj2, reproduced by the dashed curve in

Fig. 3, which has a width of �100 fs. This may appear
surprising because in this measurement all the photons at
the different frequencies within the phase matching are
collected. However, the identity

R
d2�jc pwð�; �Þj2 ¼R

d2qjVðq; �Þj2 shows that in this case the coincidence

rate takes the form of an incoherent superposition of the
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FIG. 1 (color online). (a),(b) 2D cut of the biphoton amplitude
at �y ¼ 0, clearly displaying its X-shaped geometry (the whole

3D plot has a biconical shape). (c),(d) 1D cuts of the coincidence
rate jc pwj2 along the temporal (c) and spatial (d) coordinate axis

[indicated by the two dashed lines in (b)]. The width of the peaks
shows the relative temporal and spatial localization of biphotons.
c 0

pw ¼ c pwð0; 0Þ. BBO crystal, cut at 33.436	; g ¼ 10�3, �p ¼
352 nm, lc ¼ 4 mm.
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FIG. 2 (color online). Plot of jVj showing the phase-matching
curve in the ðqx;!Þ plane. The dashed lines show the bandwidth
selected by the filter, and the arrows indicate the different
bandwidths involved (same parameters as in Fig. 1).
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probabilities of detecting a pair of photons at a given q and
has therefore the same �100 fs temporal localization as
the far-field coincidence rate at fixed q. Conversely, by re-
solving the near-field positions of twin photons, the mea-

sured quantity is jc pwð0; �Þj2 ¼ jR d2q
ð2�Þ2 Vðq; �Þj2, which is

a coherent superposition of the probability amplitudes at a
given q (i.e., at a given frequency due to the angle-
frequency relation imposed by phase matching), and there-
fore allows a stronger temporal localization.

The nonfactorability in space and time of the X entan-
glement thus opens the relevant possibility of tailoring the
temporal bandwidth of the biphotons by acting on their
spatial degrees of freedom. As a specific example, let us
consider the effects of spatial filtering on the temporal
correlation. Let us assume that a 4f lens system is em-
ployed to image the near field of the PDC fluorescence, and
that a circular aperture of radius ra is located in the far-field
2f plane, acting as a filter that cuts all the angular spectrum
at �> �max ¼ arcsinðra=fÞ. Figure 4 shows the effect on
the temporal correlation peak. While in the absence of any
spatial filter the correlation shows a strong temporal local-
ization, as the angular bandwidth is reduced by spatial
filtering, the two-photon correlation broadens in time,
which gives clear evidence of the nonfactorability of the
correlation.

In conclusion, this work demonstrates that the X geome-
try is intrinsic to PDC at the microscopic quantum level of
photon-pair entanglement. As for the macroscopic X waves
and the classical phase coherence of PDC [2], the non-
factorability is imposed by the phase-matching mechanism
governing the wave-mixing processes. Following this anal-
ogy, we coined the name of X entanglement. The key
element of novelty that emerges in the microscopic context
is the extreme relative localization of twin photons, with
correlation times and correlation lengths in the femtosec-
ond and micrometer range, respectively. The strong tem-
poral localization is determined by the full extent of the
PDC bandwidth, rather than by the bandwidth ��0 char-
acterizing the PDC far field. For this reason, a near-field

measurement scheme able to resolve spatially the coinci-
dences would provide a powerful tool for high-precision
measurements, capable of improving substantially the
resolution power in the temporal domain with respect to
standard schemes.
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twin photons are collected at the same near-field position.
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out resolving photon positions.
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FIG. 4 (color online). Effect of spatial filtering on the X
entanglement. (a) Temporal correlation peak jc pwð0; �Þj2 in

the presence of a spatial filter, that cuts the angular spectrum
at an angle �max. The two insets show the full X correlation for
�max ¼ 20 (b) and in the absence of the spatial filter (c).
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