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Multielectron Correlation in High-Harmonic Generation: A 2D Model Analysis
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We analyze the role of multielectron dynamics in high-harmonic generation spectroscopy, using an
example of a two-electron system. We identify and systematically quantify the importance of correlation
and exchange effects. One of the main sources for correlation is identified to be the polarization of the ion
by the recombining continuum electron. This effect, which plays an important qualitative and quantitative
role, seriously undermines the validity of the standard approaches to high-harmonic generation, which

ignore the contribution of excited ionic states to the radiative recombination of the continuum electron.
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High-harmonic generation (HHG) takes place when a
gas of atoms or molecules is exposed to an intense laser
pulse, yielding harmonics of the incident field with orders
up to several hundreds [1]. In addition to being the work-
horse for modern attosecond pulse technology [2], HHG
offers the potential for resolving fundamental microscopic
processes with sub-A spatial and subfemtosecond temporal
resolution [3-5].

Applications of HHG to attosecond dynamic imaging
and molecular tomography typically rely on the three-step
model [6]. An electron is (i) liberated from the highest
occupied orbital, (ii) accelerated by the intense laser field,
and (iii) emits a harmonic photon upon returning to the
parent ion and recombining to the initial bound state of the
neutral. This model uses the single active electron (SAE)
approximation, with only the weakest bound electron in-
teracting with the laser field.

The importance and the exact role of multielectron
effects in HHG remain unclear. Already in the frozen-
core approximation, multielectron effects are indispens-
able for the tomographic retrieval of wave functions [7—
9]. It is clear that exchange and correlation should play a
role in HHG [10]. However, little is known about the
specific ways in which correlation effects manifest them-
selves. This lack of qualitative and quantitative under-
standing is a serious bottleneck for applications of HHG
to attosecond dynamic imaging [3-5].

This bottleneck exists decades after the discovery of
HHG due to fundamental difficulties in the analysis of
intense field multielectron dynamics. First, solution of
the time-dependent multielectron Schrodinger equation is
beyond reach [11-13]. Approximate methods, such as the
time-dependent Hartree-Fock (TD HF) [14], frozen-core
(fc) [15], and time-dependent density functional theory
[16] neglect all or a part of the electron correlation; their
accuracy is not controlled. Second, even if the Schrodinger
equation is solved, extracting the underlying physical
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mechanisms from the multidimensional wave function is
a formidable problem in its own right.

We report progress on both challenges. We solve the
time-dependent Schrodinger equation for HHG in a two-
electron model diatomic molecule with two spatial dimen-
sions per electron. Our numerical analysis builds on the
multiconfiguration time-dependent Hartree (MCTDH)
method [17]. Together with the multiconfiguration time-
dependent Hartree-Fock (MCTDHF) method, pioneered in
strong-field dynamics in [18,19], it provides consistent
ab initio framework for tracking multielectron effects.
Our optimization of the multiconfiguration expansion
brings the computational costs of a converged two-electron
calculation down to a level comparable with conventional
one-electron calculations and opens the door to a system-
atic analysis of multielectron effects in HHG. As for the
second challenge, we develop an approach that allows us to
systematically identify and quantify the physical mecha-
nisms underlying multielectron effects in HHG.

Multielectron effects arise from (i) electron exchange,
(i1) polarization and excitation of the neutral and the ion by
the laser field, and (iii) polarization and excitation of the
ion by the recolliding electron. While the second effect has
been considered by [18], the last has been mostly disre-
garded. We show that the interplay between the recolliding
electron and the ion is essential for quantitative modeling
of HHG. It may not only enhance [10], but also suppress
HHG, depending on the constructive or destructive inter-
ference of the harmonic signals generated via channels
associated with different ionic states.

Our analysis uses the MCTDH approach [17]. For two
electrons in 2D each, we expand the full 4D wave function
in sums over products of lower dimensional orbitals. In
contrast to the conventional Hartree or HF methods, an
MCTDH orbital is a mathematical object that does not
necessarily represent a single particle. The choice of the
orbitals crucially influences the efficiency of MCTDH. We
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have chosen the expansion orbitals to be 1D functions,
¢;(x, 1), yielding

n ny
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for the 4D wave function W. Here, A; ; ;. j4(t) are the
expansion coefficients, and n;, n,, ns, ny represent the
number of expansion functions along the coordinates r; =
(x;, y;) and ry = (x,, y,), respectively.

The equations of motion for A(#) and ¢;(x, #) are derived
from the variational principle, see, e.g., [17] (Sec. 3.1). For
our Hamiltonian, the initial spin state is conserved and can
be factored out. By comparison, in MCTDHF [18,19], the
spin is the part of the expansion orbitals and remains in the
calculation. We start with the singlet state, for which the
spatial part of the wave function W is symmetric. This
symmetry is preserved during propagation. The initial
(ground) state is calculated by imaginary time propagation
[17] (Sec. 7.1).

Our model system uses soft-core Coulomb potentials for
both nuclear-electron and electron-electron interactions,
V(x,y) < (x2 + y2 + a?)~'/2. The soft-core parameter a =
0.64 is chosen to reproduce the N, ionization potential of
15.8 eV and the two-electron binding energy of 46.8 eV.
Two nuclei (Z = 1) are held fixed at the N, equilibrium
internuclear distance of R = 2.08 a.u.. The laser field is
linearly polarized, E(f) = Eysin?(7t/T)cos(wt), with a
peak intensity of 10'* W/cm?, a wavelength of 800 nm,
and a pulse duration T = 10T, where Ty =27/w =
2.6 fs. Angle 6 between the field polarization and the
nuclear axis is fixed. The calculation is performed in the
length gauge. A grid spacing of 0.4 a.u. is sufficient.

One of the critical issues is calculating the matrix ele-
ments of the electron-electron interaction. The expansion

1
Vi, = x)? + (0 —y)? +d®
= Zvi(xl = x)u;(y; — y2) ()

Vee(x1, y13 X2, y2) =

in the basis of natural potentials v; and u; [17] (Secs. 6.1,
6.2), yields matrix elements of the type (¢; (x1)¢;,(x,) |
v;(x; — x3) | @), (x))e,,(x,)). Using the convolution theo-
rem combined with the fast Fourier transform results in a
nearly linear scaling with the number of grid points.

We use an absorbing potential of the form W(x) =
—in(lx| — x,)? in each coordinate for |x| = x,, with n =
0.0005. For our laser parameters, we use x. = 16 a.u. to
absorb the so-called “long” trajectories while keeping the
short trajectories, which dominate experimental harmonic
spectra [1], intact. This approximation has no influence on
the multielectron physics under study. Convergence of the
calculation with respect to the number of configurations is
determined by diagonalizing the reduced density matrix

[17] (Sec. 3.3). Its eigenvalues are the populations of the
so-called natural orbitals (the eigenstates of the reduced
density matrix.) For n; = n, = ny = ny = 15 the lowest
eigenvalue remains below 10 at all times. A HHG cal-
culation takes below 4 h on a single core Intel 3.0 GHz
CPU.

To analyze the role of the multielectron dynamics in
HHG, we introduce the method of ionic eigenstate-
resolved (IER) wave functions. Theses wave functions
are determined by projecting the exact wave function
W(r,, ry, 1) onto the complete set of the ionic eigenstates,
Pi(ry), e, dilry, 1) = (Pi(ry) | W(ry, 1y, 1)). After sym-
metrization with respect to the electrons we obtain

M
Wy (ry, 1o, 1) = Z[d’k(l’p D (ry) + i(r) di(ry, 1)]
k=1
3)

with M the number of ionic eigenstates. The binding en-
ergies of the first four ionic eigenstates are —31 eV,
—20.4 eV, —15 eV, and —10.9 eV, respectively. As the
ionic eigenfunctions ¢ ; are contained in ¢, symmetriza-
tion leads to an overcomplete basis; i.e., the terms
(il with j=1,..., M are counted twice. This
can be remedied by substituting ¢, — (1 — P)¢, in (3).
The projector P = (1/2) Zﬁ"’zl | ¢;(r)}X¢;(r) | removes
the double counted contributions.

Harmonic spectra are calculated in the acceleration
gauge as
2

Iy(Q) = 4 )

f Wl Y 1 B, e dr
6x1

For a systematic analysis of different approximations, we
also use

2

5(Q) =4 | j (a()W,| g—:l + EO|W,)e®dr | (5)

Here, a(1) = (¥, | W(1)), ¥, is the two-electron ground
state, V is the potential of the nuclei, E(¢) is the laser
electric field, and the factor 4 arises from the electron
exchange symmetry. Our analysis is restricted to emission
along the laser polarization (x axis). The ansatz V;, de-
scribes well the part of the wave function with one electron
bound and one in the continuum. Thus, it is best suited for
analyzing harmonics with energies above the ionization
potential [, i.e., beyond the 11th harmonic order in our
case. Replacing V,, with W in Egs. (4) and (5) yields the
converged full spectra, I and 19, respectively.

Inserting Eq. (3) into the Schrodinger equation and
multiplying with (¢ ; | on the left side yields

i0,¢(ry, 1) + iz<l//j | 9, ()i (ry)
%
= Z<¢’j | H | ydi(ry, 1) + (g [ H| () ifi(ry).
x
(6)
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Here H is the total two-electron Hamiltonian and the
bracket denotes integration over r,. Equation (6) shows
how to extract information on the multielectron effects by
looking at the role of different ionic eigenstates. For M =
1, Eq. (3) describes the part of the exact wave function,
where one electron remains in the ionic ground state. It is
the closest possible to the SAE approximation.

There is no unique definition of correlation. Here, we
associate it with the population exchange between the
ground and excited ionic states. In this sense, results for
M =1 in Eq. (3) exclude correlation, only exchange is
present. Note that Eq. (3) goes beyond the HF ansatz.
Indeed, Eq. (6) for ¢, includes the coupling to all excited
states. Time-dependent HF arises by restricting the sums in
Eq. (6) to a single k = 1 term, thus losing any coupling
between ¢, and other ¢,.

Finally, the fc limit is obtained by neglecting the Pauli
principle (symmetry) and by dropping the second terms on
the left- and the right-hand sides of Eq. (6):

10, (ry, 1) = (P () | H| ¢y (r2))pe(rry, 1).  (7)
The harmonic spectra in the fc approximation, /;. and Ig,
are calculated using Egs. (4) and (5) with ¢ (r;, 1), instead
of Wy, and (¢ (0)| by (1)) s (0) instead of a(r)W,. The
prefactor 4 in Egs. (4) and (5) must be omitted.
Figure 1 shows the harmonic spectrum (a),(b), the ratio
of the fc harmonic yield /. to the full harmonic yield 7 (c),
(d), and I,,/1 for M = 1, 2, 4 (e,f). The molecular axis is
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FIG. 1 (color online). Converged full harmonic yields, / and
I6, calculated by (a) Eq. (4), (b) Eq. (5); ratio of frozen core to
full harmonic yields, (c) Iy./I and (d) IZ/I¢ (circles); ratio of
IER to full harmonic yields, I, /I (squares); in the fc calculation
I, was adjusted to match the exact 1,,; () I,/I and (f) I§;/I°,
for M =1 (squares), M = 2 (circles) and M = 4 (diamonds).
The molecule is aligned along the field, # = 0°. M is the total
number of ionic states included in the IER expansion (3). From
fc to M = 1 mainly exchange is added. Correlation is system-
atically built in with increasing M.

aligned along the laser electric field, i.e., §# = 0°. The left
and right panel show the results for Egs. (4) and (5),
respectively. A notable qualitative difference between the
two spectra (a),(b) occurs for the harmonics between 19
and 23. The suppression in this range in Fig. 1(b) is due to
the two-center interference [14]. In Fig. 1(a) the two-center
interference is masked by the polarization of the neutral
ignored in Eq. (5). The difference of up to a factor of 30
between (a) and (b) shows the importance of the laser
induced polarization of the neutral in HHG.

For the fc calculation, 7, has been adjusted to that of the
two-electron system by adjusting the soft-core parameters
of the Coulomb potentials. Nevertheless, the difference
from the full result is substantial. Close to the two-center
interference minimum, the difference is more than a factor
of 3, 20 in Figs. 1(c) and 1(d), respectively.

The result is substantially improved for the eigenstate-
resolved approach with M = 1, mainly due to accounting
for the exchange. The maximum difference to the full
result is 1.8 and 4.2 in the range of the two-center interfer-
ence minimum; see the squares in Figs. 1(e) and 1(f),
respectively. Similar to the fc limit, the agreement is im-
proved for the rest of the spectrum, with a difference
between 20% and 40%. The expansion converges quickly
with increasing M. In I, (circles), HHG from the first ionic
excited state is added, which improves agreement to within
10% of the full result. The contribution of i3 is negligible
due to symmetry. Adding ¢, (diamonds) yields almost the
full result.

We have also calculated 1;/I and I¢ /€ as a function of
the alignment angle . The maximum difference to the full
result is near the two-center interference minimum, which
moves to higher harmonics with increasing 6 [14].

Thus, the fc model gives a very coarse approximation to
HHG. The ionic state expansion allows us to analyze the
key missing components. Starting with the fc limit, first the
exchange is added for M = 1. Correlation is built in with
increasing M. For our system, the accuracy of the ground
state channel (M = 1) is sufficient for many purposes: the
contribution of ionic excited states is suppressed by the
large energy gap with the ionic ground state. However, for
applications such as HHG-based molecular tomography,
which relies on the series of harmonic spectra as a function
of €, an error of about a factor of 2—4 in the region of the
two-center interference is significant. This error comes
from the part of the correlation (M = 2) that cannot be
captured by a SAE analysis. In larger systems, where
correlation and polarizability are usually more pro-
nounced, more significant differences are expected. As a
result, understanding of the physical origin of the ionic
excited state channels is imperative.

Population of the ionic excited states can be caused by
the two mechanisms: (i) laser excitation of the two-
electron excited states and subsequent decay to ionic ex-
cited states during ionization; (ii) virtual and/or real ex-
citations in the ion after ionization, either by the laser field
and/or by the recolliding electron.
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FIG. 2 (color online). I;/I (a) and I¢/IC (b), determined by
replacing the field-free ionic ground state ¢, in Eq. (3) with the
adiabatic laser polarized ionic ground state #;(E(¢)) (empty
squares); as a reference, I;/1, IIG/IG from Figs. 1(e) and 1(f)
for the field free ionic ground state is plotted (full squares).
The results with corresponding empty and full triangles refer to
6 = 30°.

The importance of (i) was assessed by projecting the full
time-dependent wave function on the two-electron eigen-
states (determined by diagonalizing the field-free Hamil-
tonian). Although two-electron excited states are populated
substantially en route to ionization, upon ionization they
decay into the ground ionic state. We verified it by repeat-
ing the calculation for the above parameters, with the
individual excited states as initial state. No substantial
population of the ionic excited states was found, ruling
out the mechanism (i) for our system.

Regarding the mechanism (ii), excitations by the laser
field can be separated into adiabatic polarization (virtual)
and nonadiabatic (real) excitations. Nonadiabatic excita-
tions occur when energies of the polarized states change
too fast for the electron to follow. Direct simulations of this
dynamics between the ground and the first excited state of
the ion yields the nonadiabatic excitation probability P{ =
9 X 107°. Hence, the nonadiabatic effects are negligible.

To gauge the effect of the adiabatic polarization, we
have replaced the field-free ground state ¢; in the wave
function (3) with the polarized one, (E(z)), and calcu-
lated 1,/1; see Fig. 2. While the adiabatic polarization is
important, it does not generally improve the agreement
with the full result and is not the dominant effect.

Thus, the differences between the laser dressed /; and /
spectra in Fig. 2 are due to the real and virtual excitations
of the ion by the recolliding electron. Only in this case the
harmonic cutoff is unshifted, in agreement with our simu-
lations. The importance of recollision in our model system
was further corroborated by calculating the final popula-
tion of the ionic states after the laser pulse as a function of
the laser polarization. The population of the first excited
ionic state is a few percent of the ionic ground state
population for linear polarization, and drops to zero with
increasing ellipticity.

Our analysis quantifies the importance of various
multielectron effects. The difference between I and I¢ in
Figs. 1(a) and 1(b) shows that neglecting the polarizability
of the neutral system can yield order of magnitude differ-

ences (see also [18]). To determine the influence of other
effects, we use Eq. (5), which excludes the neutral ground
state polarization. The difference between I and I¢ of up
to a factor of 5 is mainly due to exchange. The difference
between I¢ and 19 of more than factor of 4 is due to
correlation, major part of which comes from the polariza-
tion of the ionic ground state by the returning electron.
While the importance of collisional excitations in double
ionization has been understood for over a decade, it has
been ignored so far in HHG. We expect our conclusions to
hold in 3D, since the dimensionality scaling of the recom-
bination and collisional excitation probabilities during the
recollision is the same.

All of the multielectron effects identified here will be-
come even more pronounced in extended molecules having
higher polarizabilities. This presents a serious challenge
for attosecond dynamic imaging of wave functions by
molecular tomography. Novel theoretical retrieval tools
that can account for multielectron effects are required.
One potential path is revealed by our analysis. The fact
that only two ionic states in Eq. (6) are important in the
HHG in our system shows that one can account for essen-
tial multielectron effects by solving several coupled one-
electron Schrodinger equations for essential ionic states,
leading to dramatic improvement in computational cost.
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