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Several authors have argued that self-consistent fðRÞ gravity models distinct from the cold dark matter

model with a cosmological constant (�CDM) are almost ruled out. Confronting such claims, we present a

particular two-parameter fðRÞ model that (a) is cosmologically viable and distinguishable from �CDM,

(b) is compatible with the existence of relativistic stars, (c) is free of singularities of the Ricci scalar during

the cosmological evolution, and (d) allows the addition of high-curvature corrections that could be

relevant for inflation.
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Introduction.—Since the discovery of cosmic accelera-
tion, more than a decade ago, considerable effort has been
devoted in cosmology to understand what is the physical
mechanism responsible for it. A relic cosmological con-
stant�, even though arguably the simplest explanation and
in good accordance with observations, faces some theo-
retical difficulties (mainly due to the cosmic coincidence
problem and related fine-tuning [1]) that have motivated an
intense search for alternatives. These can be divided into
two main conceptual approaches, both involving the intro-
duction of new degrees of freedom (see for instance [2]):
either one modifies the left-hand side of Einstein’s equa-
tions (modified gravity) or one adds a new term to the
energy-momentum tensor, arguably associated with a new
fundamental field not directly related to gravity.

Special attention to the former approach has been given
in the past five years. In particular, fðRÞ gravity theory, due
to its simplicity, received the main focus (for a recent
review, see [3] and references therein). This approach
amounts to writing the action as

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�G
fðRÞ þLmat

�
; (1)

where fðRÞ ¼ Rþ�ðRÞ, R is the Ricci scalar, and �ðRÞ is
an arbitrary function. General relativity (GR) without a
cosmological constant is obtained in the special case in
which �ðRÞ is identically zero. Although a great deal of
effort has been employed to develop this approach, it
appeared to be a difficult challenge to build a new
Lagrangian that does not spoil the successes of GR—one
that passes solar system tests, describes the early Universe,
allows a matter-dominated phase followed by an acceler-
ating attractor [4]—and, at the same time, does not suffer
from curvature singularities [5]. The presence of singular-
ities may have devastating consequences and could forbid,

for instance, the formation of relativistic stellar objects
such as neutron stars [6].
Singularity-free fðRÞ model.—Several popular fðRÞ

models investigated in the literature are generalized by
the following expression:

fðRÞ ¼ R� RS�

�
1�

�
1þ

�
R

R�

�
n
��1=�

�
: (2)

For instance, choosing � ¼ �1 we obtain the models
presented in [7]; for � ¼ 1 we recover the model proposed
in [8]; for n ¼ 2 we get the fðRÞ function discussed in [9].
In this Letter we consider the special case in which n ¼ 1
and we take the limit � ! 1. In this limit (2) can be recast
as (rewriting RS as �R�)

fðRÞ ¼ R� �R� ln
�
1þ R

R�

�
; (3)

where � and R� are free positive parameters. Notice
that the above function satisfies the stability conditions
[10] (a) fRR :¼ d2f=dR2 > 0 (no tachyons [11]),
(b) fR :¼ df=dR > 0 (no ghosts) for �< ð ~R=R� þ 1Þ,
where ~R is the value of the Ricci scalar at the final accel-
erated fixed point, and (c) limR!1�=R ¼ 0 and
limR!1�R ¼ 0 (GR is recovered at early times). Above
and henceforth, �R :¼ d�=dR.
Starting from the action (1), one obtains the equation of

motion for fðRÞ:

fRR�� �r�r�fR þ
�
hfR � 1

2
f

�
g�� ¼ 8�GT��; (4)

the trace of which is given by

hfR ¼ 8�G

3
T þ 1

3
ð2f� fRRÞ; (5)

where T is the trace of the energy-momentum tensor. We
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now introduce the scalar degree of freedom (d.o.f.) � :¼
fR and write the equations based on the mapping from fðRÞ
gravity (with positive first and second derivatives) onto
Brans-Dicke scalar-tensor theory with parameter ! ¼ 0.
The resulting field equation is

h� ¼ dV

d�
�F ; (6)

with the force term given by F :¼ �ð8�G=3ÞT and

dVðRð�ÞÞ
d�

:¼ 1

3
ð2f� fRRÞ: (7)

When applying the model (3) to a spatially homogene-
ous and isotropic universe, the scalar d.o.f. becomes

�½RðtÞ� ¼ 1� �R�
RðtÞ þ R�

; (8)

and the d’Alembertian in (6) is effectively just a time-
derivative: h � �@2=@t2 � 3H@=@t; our choice for the
metric signature is ð�;þ;þ;þÞ. It is straightforward to
see that � ! 1� as R ! 1, which points out the same
singularity [5] featured in previous models [8,9,12].
Inverting the relation (8) and integrating (7) we find that
(up to a constant)

3Vð�Þ
R�

¼ ��ð2�� 3Þ ln
�

�

1� �

�
þ ð�� 1Þ

�
�� 3

2
� �

�
:

(9)

Note that since (8) defines a one-to-one relation between �
and R, the potential Vð�Þ is well defined and not multi-
valued, contrary to the models in [7–9]. Figure 1 depicts
the potential for � ¼ 2, as well as typical potentials de-
rived from models [8,9]. Taking the limit � ! 1�, we find
that

Vð� ! 1�Þ � �R�
3

ln

�
�

1� �

�
! þ1; (10)

which shows the presence of an infinite barrier at � ¼ 1
that prevents the singularity discussed in [5] to be reached.
We can understand this result in a more intuitive way by

making use of the well-known duality between fðRÞ and
scalar-tensor theories: a conformal transformation of the
metric can cast the Lagrangian from the Jordan into the
Einstein frame, converting the scalar d.o.f. � into a canoni-

cal scalar field ~� :¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=16�G

p
ln� [13]. The field equa-

tion for ~� has the same structure of (6), but with the
following potential:

VEðRð~�ÞÞ ¼ 1

16�G

R�R � �

ð1þ �RÞ2
: (11)

All the discussion above, regarding the presence of an
infinite barrier, applies to VE as well. Note that since 1þ
�R > 0 [stability condition (b)], the numerator of Eq. (11)
is the only factor that can make the potential diverge as
R ! 1. In [14] the singularity was avoided by introducing

an extra high-curvature term �Rnð>1Þ in the model inves-
tigated in [9]. It is easy to see why that kind of correction
works: in that case, the numerator in (11) is itself propor-
tional to Rn. Nevertheless, such term cannot be used, at the
same time, both to avoid the singularities and to generate
inflation [15]. This is not the case of the model investigated
in this Letter, since it is not necessary to include such terms
to avoid the two singularity problems, as we have shown
above (for the case discussed in [5]) and will show below
for the case discussed in [6].
Notice that two different singularity-free classes of fðRÞ

are possible: we can pick a function � such that either
limR!1R�R ¼ 1 or limR!1� ¼ �1 holds. In the former
case, � can even become constant as R ! 1—which
actually happens in the models previously mentioned
[8,9]—but it should do so slowly, thus keeping the diver-
gence of R�R, which does not happen on those models.
The model (3) belongs to the latter case. Another interest-
ing example of this class is

fðRÞ ¼ R� �R�
�
1þ R

R�

�
n
; (12)

with �> 0, R� > 0, and n 2 ð0; 1Þ. Although preliminary
tests indicate that this model is cosmologically viable, it
carries an explicit positive cosmological constant, in direct
contrast to (3).
We further remark that the potential (11) derived from

(3) generates a Yukawa-like force which is fully compat-
ible with the chameleon mechanism [13,16]. In other
words, the mass of the � field is large (small) when the
background matter density is large (small). This mass
dependence on the local environment explains how this
extra (or fifth) force can have cosmological implications
while at the same time evading detection by local gravity
experiments.
Relativistic stars.—The authors of [6] argue that the very

existence of relativistic stars poses a strong constraint on
fðRÞ gravity theories. For the models studied in that paper,
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FIG. 1 (color online). Vð�Þ=R� :¼ �Uð�Þ=R� for different
models: ours, with � ¼ 2 (blue solid line), Starobinski’s for
fn ¼ 2; � ¼ 2g [see [9]] (red dashed line), and Hu and Sawicki’s
for fn ¼ 2; m2 ¼ 1; c1=c2 ¼ 2g [see [8]] (green dot-dashed line).
The physically interesting region is 0<�< 1. For the multi-
valued potentials only the lower lines are physical.
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it was not possible to evolve the metric from inside a star
up to large spatial scales and match the de Sitter solution
asymptotically. We show below that this divergence is
circumvented by model (3) and, therefore, does not repre-
sent a general feature of fðRÞ models. For the sake of
clarity, we follow the classical-mechanics analogy used
in [6] and the necessary definitions. We consider a static
and spherically symmetric metric and write the
d’Alembertian in (6) as h � @2=@r2 þ ð2=rÞ@=@r in
spherical coordinates; we are assuming a Minkowski back-
ground for a moment. In this case, Eq. (6) can be seen as
the equation of motion of a classical particle of unit mass
(albeit one whose ‘‘time’’ coordinate is our spatial coor-
dinate r) submitted to both an external and frictional
forces. Therefore,

d2�

dr2
þ 2

r

d�

dr
¼ ~F þF U; (13)

where ~F :¼ �F and F U :¼ �dU=d� are, respectively,
the ‘‘force’’ due to the trace of the energy-momentum
tensor (nonvanishing inside the star) and the ‘‘force’’ due
to the potential Uð�Þ ¼ �Vð�Þ; see Eq. (9) and Fig. 1.
Again, the change in sign is just a consequence of the fact
that now it is the spatial (instead of time) dependence of �
which is the most relevant.

For the models analyzed in [6], there was no solution
which would describe a particle going uphill pulled by the

force ~F (while still inside the star) and stop at the top of the
potential at r ! 1, which would correspond to the
de Sitter metric. The particle would either return and reach
the singularity at � ¼ 1 (where R ! 1) or overshoot the
potential towards � ¼ 0 (which would also lead to a
singularity, for instance, in the Kretschmann scalar K :¼
R����R����). Fairly enough, Uð�Þ diverges at � ¼ 1, as

in all other models [8,9]. As we will show below, the
advantage here is a well-behaved solution fully compatible
with relativistic stars embedded in a de Sitter universe.

Let us now determine the full evolution of the � field. As
previously mentioned, we start from a static and spheri-
cally symmetric metric

ds2 ¼ �NðrÞdt2 þ 1

BðrÞdr
2 þ r2d�2 (14)

and assume a constant energy-density star whose energy-
momentum tensor is given by T�

� ¼ diagð� �0; pðrÞ;
pðrÞ; pðrÞÞ. The initial conditions at ri ¼ 10�8R�1=2

� , i.e.,
close to the center of the star, are given by NðriÞ ¼ 1þ
N2r

2
i , BðriÞ ¼ 1þ B2r

2
i , pðriÞ ¼ pc þ p2r

2
i =2, and

�ðriÞ ¼ �cð1þ C2r
2
i =2Þ. The coefficients N2, B2, p2, and

C2 can be written in terms of �0 ¼ 2� 108�eff and of the
central values pc ¼ 0:3�0, Rc ¼ 10�8�0, Vð�cÞ, and
dV=d�ð�cÞ. The effective value of the cosmological con-
stant is given by �eff ¼ R1=4, where R1 is the value of the
Ricci scalar when dV=d� ¼ 0. We refer the reader to the
original paper [6] for the full set of equations. Energy

conservation provides an important relation between pðrÞ
and NðrÞ inside the star. We evolve the system
fp; B; �; d�=drg from ri up to the radius R of the
star [defined by pðRÞ ¼ 0] where we require continuity
of the variables. From then on we evolve the system

fN;B; �; d�=drg until r ¼ R�1=2
� (cosmological scales).

We show in Fig. 2 the behavior of the field � for different
values of initial conditions. Note that some trajectories do
not get past the top of the potential and return towards the
singularity at � ¼ 1 (top three curves) while others (three
lowest ones) overshoot and go towards � ¼ 0 and one
(indicated by an arrow) stops right at the maximum. We
recall that this solution was obtained without any high-
curvature correction. It is obviously an issue of fine-tuning
the initial conditions to stop exactly there. Another remark-
able feature of this model is the absence of singularity in K
as � decreases below the peak of its potential.
Promising model.—A viable cosmological model must

start with a radiation-dominated universe and have a saddle
point matter-dominated phase followed by an accelerated
epoch as a final attractor. We can formally state such
criteria if we use the parameters m :¼ Rf;RR=fR and r :¼
�RfR=f. We refer the reader to the original paper [4] for a
full discussion on this subject. An early matter-dominated
epoch of the Universe can be achieved ifmðr � �1Þ � 0þ
and dm=drðr � �1Þ>�1. Furthermore, a necessary con-
dition for a given model to reach a late-time accelerated
phase is 0<mðr � �2Þ � 1. The model (3) satisfies both
constraints for �> 1 regardless of R�.
Using (4), we obtain the modified Einstein equations

below for a homogeneous Universe filled with matter
energy density �m (baryons and cold dark matter) and
radiation energy density �r:

3H2 ¼ 8�Gð�m þ �rÞ þ ðfRR� fÞ=2� 3H _fR

þ 3H2ð1� fRÞ (15)
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FIG. 2 (color online). The field � with � ¼ 1:2, pc ¼ 0:3�0,
and Rc varying from 1� 10�8�0 to 4� 10�8�0. The arrow
points out the solution that stops at the maximum of the potential
at r ! 1. The thin (red) lines indicate the region inside the star.
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� 2 _H ¼ 8�Gð�m þ 4�r=3Þ þ €fR �H _fR � 2 _Hð1� fRÞ;
(16)

where a dot corresponds to derivative with respect to t,
H � _a=a, and aðtÞ is the scale factor. From the equations
above, we can define �x, px, and wx :¼ px=�x, respec-
tively, the energy density, pressure, and the equation-of-
state parameter of the so-called ‘‘curvature fluid’’:

8�G�x :¼ ðfRR� fÞ=2� 3H _fR þ 3H2ð1� fRÞ (17)

8�Gpx :¼ €fR þ 2H _fR � ð2 _H þ 3H2Þð1� fRÞ
þ ðf� fRRÞ=2: (18)

These definitions are such as to guarantee that the curva-
ture fluid is conserved and only minimally coupled to
matter and radiation [17]. We also define the relative
densities �i (where i stands for either radiation, matter,
or curvature) �i :¼ 8�G�i=3H

2.
In Fig. 3 we plot the behavior of �m, �r, �x, the

deceleration parameter q :¼ � €aa= _a2, the jerk j :¼
€aa= _a2, the equation-of-state parameters for the curvature
fluid wx and for the effective fluid weff :¼ ptot=�tot �
ðpr þ pxÞ=ð�m þ �r þ �xÞ, all of which can be written in
terms of known variables R, H2, and �i. In Fig. 3 we can
clearly distinguish the radiation-dominated era when q ’ 1
(and j ’ 3, not shown), followed by a transient domination
by matter (q ’ 1=2 and j ’ 1), the current accelerated
expansion (q < 0), and the final de Sitter attractor (q ¼
�j ¼ �1). We find similar results for different initial
conditions and parameters, indicating what seems to be
an absence of fine-tuning. We remark that the wx curve in
Fig. 3 is noisy in the early Universe since at that time �x is
too small and the numerical calculation of wx becomes
inaccurate.

We point out that there is some residual arbitrariness in
defining �x and px even if one is only interested in con-
served and minimally coupled fluids. The one we follow,

together with the definition of �i, is convenient for com-
parison with GR-based interpretations of observations. As
another consequence of Eqs. (17) and (18), wx neither
crosses �1 nor diverges at low redshift in contrast with
[18], where slightly different definitions are adopted. Note,
however, that observable quantities like H and �m are well
defined and in fact, using either definition, have the same
cosmological evolution.
Conclusions.—We have shown that some recent results

in the literature regarding divergences in fðRÞ theories are
not as general as previously thought. In fact, even a com-
pact, two-parameter Lagrangian like the one in (3) can
evade the aforementioned singularities. Observational con-
straints on this model are under investigation and the
results will be published elsewhere.
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FIG. 3 (color online). Cosmological evolution of the densities
�m, �r, �c (solid lines), the deceleration factor q (dot-dashed
line), the jerk j (dotted line), the equation-of-state parameters wx

and weff (dashed line and dotted line, respectively), for � ¼ 2.
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