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Many-body entangled quantum states studied in condensed matter physics can be primary resources for

quantum information, allowing any quantum computation to be realized using measurements alone, on the

state. Such a universal state would be remarkably valuable, if only it were thermodynamically stable and

experimentally accessible, by virtue of being the unique ground state of a physically reasonable

Hamiltonian made of two-body, nearest-neighbor interactions. We introduce such a state, composed of

six-state particles on a hexagonal lattice, and describe a general method for analyzing its properties based

on its projected entangled pair state representation.
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Many-body entanglement is fundamental to the under-
standing of complex condensed matter systems, as well as
a primary resource for quantum computation. A surprising
result in quantum computation is that certain entangled
states can be employed to perform arbitrary quantum in-
formation processing tasks, merely by measuring single
sites in different bases, in a method known as ‘‘one-way’’
quantum computation [1]. If such universal resource states
are available, this approach potentially simplifies experi-
mental requirements by employing only measurements and
not multiqubit gates normally needed. Exotic physical
properties may arise in these states due to their large
amount of entanglement; many methods have been devel-
oped in condensed matter theory to study such systems,
including the matrix product state formalism [2] or more
generally the projected entangled pair states (PEPS) rep-
resentation [3].

The special entangled states which make arbitrary one-
way quantum computation possible unfortunately seem to
be difficult to realize naturally. Ideally, such universal
resource states could be obtained as the unique ground
state of a naturally occurring Hamiltonian, one with only
nearest-neighbor two-body interactions. If this were the
case, especially if an energy gap existed between the
ground and first excited states, the one-way quantum com-
putation could be robust against noise. However, no such
Hamiltonian exists for any of the presently known resource
states of one-way quantum computation.

Many efforts have been made to construct the desired
many-body entangled state such that it could be the ground
state of a naturally occurring Hamiltonian. The first and
best known resource state is the cluster state, a simple
entangled state on a two-dimensional (2D) square lattice;
unfortunately, it cannot be the exact ground state of any
naturally occurring Hamiltonian [4,5]. Perturbative ap-
proaches providing a Hamiltonian whose ground state
approximates that desired have been developed [4,6–8].
A nice scheme for constructing universal resource states

has been proposed and has yielded many interesting ex-
amples [9]. Based on this, a mixed approach can be taken,
using a one-dimensional (1D) Hamiltonian to create
chains, which are then coupled by two-body unitary op-
erations [9,10] to form a 2D resource state. Matrix product
state [2] techniques allow any measurement of these 1D
chains to be computed efficiently, on a classical computer,
however, implying that they alone are insufficient for
quantum computation. Two-dimensional many-body en-
tangled states are thus likely to be essential for arbitrary
quantum computations, but few techniques are presently
known for finding local 2D Hamiltonians with the desired
ground states. Properties of such states generally remain
intrinsically hard to determine [11].
Here, we present results from a new approach to study-

ing the quantum informational and physical properties of
2D many-body entangled states using the PEPS represen-
tation. On the one hand, this representation naturally in-
cludes many-body entanglement in its state description [3]
and hence facilitates understanding of one-way quantum
computation schemes [9,12]. On the other hand, methods
have been developed to study the physical properties of
PEPS states as ground state of parent Hamiltonians [13].
Combining these insights, we are able to construct the first
examples of a system which is both the exact unique
ground state of a gapped two-body nearest-neighbor
Hamiltonian and a universal resource state for one-way
quantum computation. Moreover, we aim at reducing the
dimension of local Hilbert space in the state as much as
possible for experimental convenience, and we arrive at the
‘‘tricluster’’ state which is composed of 6-dimensional
particles.
Building on PEPS.—We start with an example which

illustrates the challenge. Consider the state jc Sqr
PEPSi defined

on a square lattice [Fig. 1(a)] where each pair of nearest-
neighbor sites are connected by singlets j’i ¼
j00i þ j01i þ j10i � j11i (suppressing normalization).

On sufficiently large lattices, starting with jc Sqr
PEPSi, any
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quantum circuit can be efficiently simulated by measuring
all four qubits at each site (on the boundary, two or three) in
appropriate time sequences and measurement bases [12].

jc Sqr
PEPSi is the unique ground state of a gapped two-body

Hamiltonian, as it is simply a tensor product of two-body
entangled states. However, the multiparticle measurement
required to make this state universal [12] is generally
disallowed in one-way quantum computation models.
Still, if the four qubits at each site were treated as a single
16-dimensional particle, the model could be interpreted as
giving the desired result, a universal resource state for one-
way quantum computation and also the unique ground state
of a gapped two-body Hamiltonian. While use of 16-
dimensional particles is experimentally unrealistic, this
model does provide a good starting point for constructing
simpler states.

Specifically, consider the set of states given by project-
ing lattices of singlets into smaller subspaces. For example,

the projector P
Sqr
Cluster ¼ j~0ih0000j þ j~1ih1111j applied to

all sites of the square lattice state gives the cluster state

on a square lattice [12] j�Clusteri / P
Sqr
Clusterjc Sqr

PEPSi, where
j~0i and j~1i are the physical qubits in the cluster state model.
In this ‘‘PEPS representation’’ picture, the physical PEPS
state is defined by two elements, a lattice of ‘‘virtual’’
singlets (connecting neighboring sites in the lattice) and
a set of projectors which act on lattice sites. Not all PEPS
states are universal for quantum computation; only a few,
such as j�Clusteri, are known to be universal.

Compared with jc Sqr
PEPSi with 16-dimensional particles,

j�Clusteri employs only qubits at each site, and hence is
more experimentally accessible. Unfortunately it cannot
occur as the exact ground state of nearest-neighbor inter-
actions [4], and the gapped Hamiltonian having it as a
unique ground state involves at least five-body interactions.
Moreover, it is known that PEPS states composed of lower
dimensional particles generally require larger interaction
range in their parent Hamiltonian [13]. Nevertheless, this
line of thought, using PEPS states, can indeed lead to a
universal resource state which is the unique ground state of
a gapped nearest-neighbor Hamiltonian, while also being
composed of particles of relatively low dimension, as we
now show.

The tricluster state.—The structure of the lattice of
singlets, and the choice of projectors, in the construction
of PEPS states, provide powerful degrees of freedom for
exploring interesting new states. Two specific insights from
the above examples illustrate this freedom: (1) Instead of
on a square lattice, a cluster state defined on a hexagonal
lattice j�Hex

Clusteri is also universal [14]. On a hexagonal

lattice of singlet pairs [Fig. 1(b)], the projector defining

this cluster state is PHex
Cluster ¼ j~0ih000j þ j~1ih111j, giving

j�Hex
Clusteri / PHex

Clusterjc Hex
PEPSi, where the labels denote left-

right-up and left-right-down virtual qubits on sites in sub-
lattices A and B, respectively. (2) PEPS states defined with

projectors P0 ¼ j~0ih100j þ j~1ih011j or P00 ¼ j~0i�
h010j þ j~1ih101j only differ from j�Hex

Clusteri by local Pauli
~Z operations, as ~ZP ¼ P0ðx � z � IÞ ¼ P00ðz � x � IÞ and
jc Hex

PEPSi is invariant with (x � z � I) or (z � x � I) applied
to every site. Hence, a modified local measurement scheme
still exists, allowing these states to also be universal.
We now introduce a new state, the tricluster state j�Trici,

which is motivated by these two insights, and has proper-
ties we desire. This is defined in the PEPS representation
on a two-dimensional hexagonal lattice [Fig. 1(b)], with
projectors

PTric ¼ j~0ih000j þ j~1ih111j þ j~2ih100j þ j~3ih011j þ j~4i
� h010j þ j~5ih101j; (1)

using the same labeling scheme as above, such that
j�Trici / PTricjc Hex

PEPSi. Hence, at each lattice site there

lives a 6-dimensional particle.
Intuitively, j�Trici is universal because it is closely

related to the standard cluster state. Specifically, j�Trici
projected into the subspace spanned by fj~0i; j~1ig is the
same as j�Clusteri, as are also the states given by j�Trici
projected into fj~2i; j~3ig and fj~4i; j~5ig, up to local Pauli
errors. Thus, j�Trici is like a ‘‘superposition’’ of three
cluster states. Computational qubits are encoded in the
virtual qubits and operated upon by measuring the physical
particles. Although the three subspaces of j�Trici cannot be
decoupled physically, they may be employed indepen-
dently in processing encoded qubits with a suitable choice
of measurement basis, as detailed later.
The most interesting nontrivial feature of j�Trici is that it

is the unique ground state of a gapped two-body
Hamiltonian, and we begin with that.
Uniqueness and gap.—The fact that j�Trici occurs as the

unique ground state of a gapped two-body Hamiltonian is
very surprising, as on the one hand the ground states of
two-body Hamiltonians are rarely exactly known and on
the other hand simply constructed states are not always
ground states of simple Hamiltonians. Even the one-
dimensional cluster state requires three-body interactions
in its parent Hamiltonian. Below, we give a two-body
nearest-neighbor Hamiltonian HTric which has j�Trici as
its ground state. Furthermore, we prove that j�Trici is the

FIG. 1. PEPS representation of 2D (a) square jc Sqr
PEPSi and

(b) hexagonal jc Hex
PEPSi lattice states. Filled circles connected

by solid lines denote virtual singlet pairs j’i. Dashed circles
denote projection of virtual qubits into physical states.

PRL 102, 220501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
5 JUNE 2009

220501-2



only ground state of HTric and the Hamiltonian has a
constant gap independent of system size.

The central step in constructing HTric and studying its
properties is to find the support space Sab of the reduced
density matrix of any two nearest-neighbor particles a and
b in the state (a, b are in two sublattices, A, B, respec-
tively). This is accomplished by first finding the corre-
sponding support space SPEPSab of the six virtual qubits on

sites a and b, in the PEPS picture, and then computing
Sab / PTricS

PEPS
ab . For example, when a is to the left of b

(Fig. 2), virtual qubits 1 to 6 on those sites are only
connected to virtual qubits � to � elsewhere. By tracing
out � to � from the 5 singlet pairs, we find SPEPSab for virtual

qubits 1 to 6 to be spanned by j�i1j�i3j’i24j�i5j�i6,
where j�i ¼ ðj0i � j1iÞ= ffiffiffi

2
p

and j’i is the singlet state.
This 16-dimensional space is then projected to give Sab for
the depicted lattice site. Sab is different for the three bond
directions in a hexagonal lattice, i.e., a to the left of, to the
right of, and below b.

Providing a two-body Hamiltonian with j�Trici being a
ground state is straightforward. The Hilbert space of two
neighboring sites a, b is 36-dimensional, larger than the
dimension of Sab. Therefore we may choose any non-
negative Hermitian operator hab on the two sites that has
Sab as its null space, such that habj�Trici ¼ 0 for every hab.
Thus, j�Trici is a ground state of the two-body
Hamiltonian HTric ¼ P

abhab, where the summation is
over all nearest-neighbor pairs. However, the key is to
construct HTric such that j�Trici is the unique ground state,
and it turns out the above procedure does work.

Specifically, let hab be the projection operator h
p
ab which

projects onto the 36� 16 ¼ 20 dimensional subspace or-
thogonal to Sab, giving the total Hamiltonian

HTric ¼
X

a2A

ðhpab þ hpba þ hpb
a

Þ: (2)

The summation is over sites a in sublattice A and the three
terms hpab, h

p
ba, h

p
b
a

correspond, respectively, to three bond

directions. The Hamiltonian is hence invariant under trans-
lation along sublattice A. An explicit expression for HTric

in terms of spin operators is given in [15].

The specific HTric we have presented has j�Trici as its
unique ground state. This is shown by verifying the con-
dition [13] that for any region R of spins in j�Trici, the
support space SR of the reduced density matrix on R
satisfies SR ¼ T

habiSab � IRnab where the intersection is

taken over all neighboring pairs ab and IRnab is the full

Hilbert space of all spins in region R except a and b. For
every possible configuration containing three or four con-
nected sites in j�Trici the condition is confirmed by direct
calculation. To check the condition for larger regions, it is
useful to notice that any region in j�Trici containing more
than one site is injective [13]. By Lemma 2 of [13], (1) if
regions R1 and R3 are not connected and R2 and R3 are
injective, then SR1[R2[R3

¼ ðSR1[R2
� IR3

Þ \ ðSR2[R3
� IR1

Þ,
and (2) if regions R1, R2, R3 are all injective, then
SR1[R2[R3

¼ ðSR1[R2
� IR3

Þ \ ðSR2[R3
� IR1

Þ \ ðSR1[R3
� IR2

Þ.
Hence for a region R containing more than 4 sites in
j�Trici, SR is the intersection of all four-body support
spaces in R. By induction, it follows that the required
condition is satisfied on j�Trici for any R. Therefore,
j�Trici is the unique ground state of HTric.
HTric is also gapped; an energy gap � above the ground

state exists, which is constant as the system size goes to
infinity. The existence of this gap guarantees protection of
j�Trici against thermal noise. � can be bounded. First, we
show that � is greater than �, the gap of another
Hamiltonian K which also has j�Trici as its unique ground
state, but has four-body terms instead of only two-body
terms. We then bound � above a positive constant value.
Consider the Hamiltonian K for a relabeled version of

j�Trici, in which particles are regrouped into disjoint
blocks each containing two nearest neighbors (Fig. 3).
Let K ¼ P

mnkmn, where m; n denote two connected

blocks, each containing two particles m½l�, m½r� and n½l�,
n½r�, respectively, and kmn is the projection onto the or-
thogonal space of the four-body reduced density matrix on

m½l�, m½r�, n½l�, n½r� (assuming m½r� and n½l� are connected).
Then HTric ¼ P

abh
p
ab � 1

4

P

mnðhpm½l�m½r� þ hp
m½r�n½l� þ

hp
n½l�n½r� Þ � 1

4

P

mn�kmn ¼ 1
4 �K. (hp

m½l�m½r� þ hp
m½r�n½l� þ

hp
n½l�n½r�) and kmn are both non-negative operators with the

same null space, so the last inequality holds for some
positive number �. Assume that the gaps of the projectors
hpab and kmn are both 1. Direct calculation gives� ¼ 1

2 . As

FIG. 2. Two representative sites a, b, and neighboring bound-
ary, in the hexagonal lattice of jc Hex

PEPSi. Filled circles connected

by solid lines represent virtual singlets j’i, and dashed circles
indicate sites projected to obtain the physical state.

FIG. 3. Regrouping of lattice sites in tricluster state into dis-
joint blocks, each containing two sites.
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discussed in the uniqueness proof, K also has j�Trici as its
unique ground state. Using this, we find � � 1

4�� ¼ 1
8�.

The gap � can be bounded by showing that K2 � cK
for some positive constant c. K2¼ðPmnkmnÞ2¼
KþP

mn;m0n0 ðkmnkm0n0 þkm0n0kmnÞ�KþP

nimnj
kmnikmnj þ

kmnjkmni , and ni and nj are blocks connected tom. The last

inequality holds because when region mn and region m0n0
do not intersect kmnkm0n0 þ km0n0kmn � 0. Direct calcula-
tion shows that (Fig. 3) kmnikmnj þ kmnjkmni � 0 for

ði; jÞ ¼ ð1; 2Þ, (1, 3), (2, 4), or (3, 4), and kmnikmnj þ
kmnjkmni � � 1

3 kmni � 1
3 kmnj for ði; jÞ ¼ ð1; 4Þ or (2, 3).

Summing over all consecutive ni, m, and nj gives
P

nimnj
kmnikmnj þ kmnjkmni � � 2

3

P

mnkmn. Therefore

K2 � 1
3K, giving � � 1

3 . Finally, we find a lower bound

on the gap � of HTric of � � 1
8� � 1

24 .

Universality.—j�Trici is a universal resource state.
Similar to a cluster state, computational qubits are encoded
in the virtual qubits, and the active computational state
flows along the lattice as measurements on the physical
states are performed. In contrast, however, with j�Trici
extra Pauli errors occur, thus necessitating additional
analysis. Below, we describe the steps necessary, focusing
on initialization and readout, one-qubit gates, and a two-
qubit gate sufficient for universality.

1. Initialization and readout: Just as with the cluster
state, with j�Trici, measurement in the six-state basis

fj~0i � � � j~5ig accomplishes several tasks. First, such mea-
surement detaches unnecessary sites from their neighbors
(up to a known Pauli error). Next for state initialization, it
gives a postmeasurement state with an encoded qubit pro-

jected into jþi (when the outcome is ~0, ~3, or ~4) and j�i (for
outcomes ~1, ~2, or ~5). At the end of computation, the
encoded qubit can also be read out in this way, giving 0

(for ~0, ~2, or ~5) and 1 (for ~1, ~3, or ~4).
2. One-qubit gates: Similar to gate implementations with

the cluster state, once a line in the lattice has been detached
from the rest, appropriately measuring a site in the line
performs a single qubit rotation, up to a known Pauli error.

Specifically, measuring in the basis fj~0i � ei�j~1i; j~2i �
ei�j~3i; j~4i � e�i�j~5ig implements operation fHZð�Þ;
XHZð�Þ; ZHZð�Þ; YHZð�Þ; ZHZð�Þ; YHZð�Þg, respec-
tively, on the encoded qubit [using standard notation for
qubit gates, with Zð�Þ denoting a rotation about ẑ by angle
�], up to preexisting Pauli frame errors from detaching the
line.

3. Two-qubit controlled-Z gate: Measurement of two
vertically connected particles a and b implements the final

ingredient needed for universality, a controlled-Z gate

CZab. Specifically, measuring in basis f0̂ . . . 5̂g ¼ fj~0i �
j~1i; j~2i � j~3i; j~4i � j~5ig implements the two-qubit opera-
tion ðXua

a Zva
a HaÞðXub

b Zvb

b HbÞ � ðXwa
a Xwb

b CZabX
wa
a Xwb

b Þ on

the two adjacent encoded qubits. For x 2 fa; bg, ux ¼ 1

for x measurement outcomes 1̂, 3̂, or 5̂; vx ¼ 1 for out-

comes 2̂, 3̂, 4̂, or 5̂; wx ¼ 1 for 4̂, 5̂; and ux, vx, wx are 0
otherwise. More complicated configuration for use in a
larger circuit is given in [15].
Conclusion.—j�Trici is a remarkable entangled many-

body state which is universal for both one-way quantum
computation and the unique ground state of a gapped
Hamiltonian HTric, made of local two-body terms. While
imperfect, due to the use of six-state spins, the tricluster
model steps closer to physical realizability than previous
models. Moreover, the methods introduced here, based on
the PEPS representation, are very general. These analysis
methods lead directly to a number of additional universal
states, and deepen connections between the study of com-
plex condensed matter systems and quantum information
science.
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