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Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain

non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials

with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they

correspond to resonances having a zero width. We show that a waveguide modeled using such a potential

operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the

spectral singularities of an imaginary PT -symmetric barrier potential and demonstrate the above

resonance phenomenon for a certain electromagnetic waveguide.
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Introduction.—Complex PT -symmetric potentials [1]
that have a real spectrum are interesting, because one can
restore the Hermiticity of the corresponding Hamiltonian
and uphold unitarity by modifying the inner product of the
Hilbert space [2–4]. It is usually believed that one can
similarly treat every non-Hermitian Hamiltonian H that
has a real and discrete spectrum. This is actually true
provided that H has a complete set of eigenvectors [2].
For the cases were the spectrum is discrete, the lack of
completeness is associated with the presence of excep-
tional points. These correspond to situations where two
or more eigenvalues together with their eigenvectors co-
alesce. This phenomenon is known to have physically
observable consequences [5]. It also plays an important
role in the study of open quantum systems particularly in
relation with the resonance states [6,7]. For the cases where
the spectrum has a continuous part, there is another mathe-
matical obstruction for the completeness of the eigenvec-
tors called a ‘‘spectral singularity’’ [8]. The purpose of the
present Letter is to describe the physical meaning and a
possible practical application of spectral singularities.

Spectral singularities were discovered by Naimark [10]
and subsequently studied by mathematicians in the 1950s
and 1960s [11]. The mechanism by which spectral singu-
larities spoil the completeness of the eigenfunctions and
their difference with exceptional points are discussed in
[9].

Spectral singularities of complex PT -symmetric and
non-PT -symmetric scattering potentials have been
studied in [9,12]. In this Letter we shall examine the
spectral singularities of the imaginary potential [13,14]:

va;zðxÞ ¼
8<
:
iz for � a< x< 0
�iz for 0< x< a

0 otherwise;
(1)

with a 2 Rþ and z 2 R� f0g, which has applications in
modeling certain electromagnetic waveguides [13].

Spectral singularities.—Consider a complex scattering
potential vðxÞ that decays rapidly as jxj ! 1 [15].

Suppose that the continuous spectrum of the Hamiltonian

H ¼ � d2

dx2
þ vðxÞ is ½0;1Þ, and for each k 2 Rþ let

c k�ðxÞ denote the solutions of the eigenvalue equation
Hc ðxÞ ¼ k2c ðxÞ satisfying the asymptotic boundary con-
ditions:

c k�ðxÞ ! e�ikx as x ! �1; (2)

i.e., the Jost solutions. A spectral singularity ofH (or v) is a
point k2? of the continuous spectrum of H such that the
c k?� are linearly dependent; i.e., they have a vanishing

Wronskian, c k?þc
0
k?� � c k?�c

0
k?þ ¼ 0 [9].

Clearly the continuous spectrum of H is doubly degen-
erate. To make this explicit, we use c g

k with k 2 Rþ and

g 2 f1; 2g to denote a general solution of the eigenvalue
equation Hc ðxÞ ¼ k2c ðxÞ. Furthermore, because vðxÞ !
0 as x ! �1, we have

c g
k ! Ag

�eikx þ Bg
�e�ikx as x ! �1; (3)

where Ag
� and Bg

� are complex coefficients. A quantity of
interest is the transfer matrix MðkÞ that is defined by

Ag
þ

Bg
þ

� �
¼ MðkÞ Ag�

Bg�

� �
:

Among its useful properties are the identity detMðkÞ ¼ 1
and the following theorem.
Theorem 1. k2? 2 Rþ is a spectral singularity ofH if and

only if either�k? or k? is a real zero of the entryM22ðkÞ of
MðkÞ [9].
Next, consider the left- and right-going scattering solu-

tions of Hc ðxÞ ¼ k2c ðxÞ that we denote by c l
k and c r

k,

respectively. They satisfy [16]

c l
kðxÞ !

�
Nlðeikx þ Rle�ikxÞ as x ! �1
NlT

leikx as x ! þ1;
(4)

c r
kðxÞ !

�
NrT

re�ikx as x ! �1
Nrðe�ikx þ RreikxÞ as x ! þ1;

(5)

where Nl, Nr, R
l, Rr, Tl, and Tr are complex coefficients.
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Nl, Nr are normalization constants, jRlj2, jRrj2 are the left
and right reflection coefficients, and jTlj2, jTrj2 are the left
and right transmission coefficients, respectively. Compar-
ing (4) and (5) with (2), we see that c l

k and c r
k are, re-

spectively, proportional to the Jost solutions c kþ and c k�.
Therefore, at a spectral singularity, k2?, the scattering solu-
tions c l

k and c r
k become linearly dependent. In view of (4)

and (5), this is possible only if Rl, Rr, Tl, and Tr tend to
infinity as k ! k?. The converse of this statement is also
true:

Theorem 2. k2? 2 Rþ is a spectral singularity ofH if and
only if the left and right reflection and transmission coef-
ficients tend to infinity as k ! k? or k ! �k?.

The following is an explicit proof of this theorem.
Comparing (4) and (5) with (3), we can determine the

coefficients Ag
� and Bg

� for c l
k and c r

k and use them to

express Rl, Rr, Tl, and Tr in terms of the entries of the
transfer matrix MðkÞ. This yields

Tl ¼ 1=M22ðkÞ; Rl ¼ �M21ðkÞ=M22ðkÞ; (6)

Tr ¼ 1=M22ðkÞ; Rr ¼ M12ðkÞ=M22ðkÞ; (7)

where we have employed detMðkÞ ¼ 1. As seen from (6)
and (7), at a spectral singularity, where M22ðkÞ vanishes,
Rl, Rr, Tl, and Tr diverge. The converse holds becauseM12

and M21 are entire functions (lacking singularities).
Another curious consequence of (6) and (7) is the iden-

tity Tl ¼ Tr. This is derived in [17] using a different ap-
proach, but is usually overlooked. See, for example, [16].

Next, we examine the S matrix of the system:

S ¼ Tl Rr

Rl Tr

� �

[16]. In view of (6) and (7), and detMðkÞ ¼ 1, the eigen-

values of S are given by s� ¼ ½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M11ðkÞM22ðkÞ

p �=
M22ðkÞ. At a spectral singularity sþ diverges while s� !
M11ðkÞ=2. This suggests identifying spectral singularities
with a certain type of resonance. Indeed, in view of
Theorem 2 and Siegert’s definition of resonance states
[18], they correspond to resonances with a vanishing width
(real energy).

PT -symmetric barrier potential.—Consider the Hamil-

tonian operator H ¼ � d2

dx2
þ va;zðxÞ with va;zðxÞ given by

(1). Because va;zðxÞ ¼ 0 for jxj> a, the results of the

preceding section apply to va;z. The determination of the

eigenfunctions [14,19] ofH and the corresponding transfer
matrix MðkÞ is a straightforward calculation. Here we
report the result of the calculation of M22ðkÞ:

M22ðkÞ ¼ e2iak½f1ðkÞ � if2ðkÞ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

q
; (8)

where f1 and f2 are real-valued functions given by

f1ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

q
j cosðakwÞj2 � j sinðakwÞj2; (9)

f2ðkÞ ¼ Re½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iy

p ð2� iyÞ sinðakwÞ cosðakw�Þ�; (10)

y :¼ z=k2, w :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� iy

p
, and Re means ‘‘real part of.’’

According to Theorem 1 and Eq. (8), k2 2 Rþ is a
spectral singularity of va;z if and only if f1ðkÞ ¼ 0 and

f2ðkÞ ¼ 0. If we insert (9) and (10) in these equations and
divide both their sides by j cosðakwÞj2, we find

j tanðakwÞj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

q
; (11)

tanðakwÞ ¼ �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� iy
p ð2þ iyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iy

p ð2� iyÞ
�
tanðakwÞ�: (12)

Now, we multiply both sides of (12) by tanðakwÞ and use
(11), cosð2�Þ ¼ ð1� tan2�Þ=ð1þ tan2�Þ and w ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� iy

p
to obtain cosð2ak ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� iy
p Þ ¼ �ð1þ 4y�2Þ þ

2iy�1. This equation is equivalent to

cosr coshq ¼ �ð1þ 4y�2Þ; (13)

sinr sinhq ¼ 2y�1; (14)

where

q :¼ ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

q
� 1Þ

r
sgnðyÞ; (15)

r :¼ ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

q
þ 1Þ

r
; (16)

sgnðyÞ denotes the sign of y, and we have employed the

identities sinðtan�1y
2 Þ ¼ sgnðyÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ½1� ðy2 þ 1Þ�1=2�

q
and

cosðtan�1y
2 Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ½1þ ðy2 þ 1Þ�1=2�

q
.

Next, we solve for y�1 in (14), substitute the resulting
expression in (13), and use the identities sinh2q ¼
cosh2q� 1 and cos2r ¼ 1� sin2r to obtain a quadratic
equation for coshq with solutions

coshq ¼ 1

2
½�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cosð2rÞ � 1

p
� cotr cscr: (17)

To ensure that the right-hand side of this equation is real,
we must have cosð2rÞ � 1

2 . Furthermore according to (13),

cosðrÞ< 0. These imply

jr� ð2nþ 1Þ�j � �

6
; for some integer n: (18)

Under this condition the right-hand side of (17) is greater

than 1. Hence, q ¼ �q�ðrÞ, where q�ðrÞ :¼
cosh�1fcotr cscr½� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cosð2rÞ � 1
p � 1�=2g. If we set q ¼

�q�ðrÞ in (14) and solve for y, we find y ¼
�sgnðsinrÞy�ðrÞ, where y� :¼ 2j sinr sinhq�ðrÞj�1.
Inserting this expression for y in (15) and (16) and solving

for q give q ¼ �~q�ðrÞ, where ~q�ðrÞ :¼ r sgnðsinrÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y�ðrÞ2 þ 1
p � 1�=½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y�ðrÞ2 þ 1
p þ 1�

q
. The spectral sin-

gularities correspond to the values of r for which q�ðrÞ ¼
~q�ðrÞ. These are transcendental equations admitting sim-
ple numerical treatments. It turns out that qþðrÞ ¼ ~qþðrÞ
does not have a real solution fulfilling (18), while q�ðrÞ ¼
~q�ðrÞ has two solutions �rn for each choice of n in (18).
Table I lists the numerical values of rn for various choices
of n. It turns out that rn > 0 and r�n ¼ �rnþ1 for n > 0.

PRL 102, 220402 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
5 JUNE 2009

220402-2



Next, we insert y ¼ �sgnðsinrÞy�ðrÞ in (16) and
use the identity a2z ¼ ðakÞ2y to obtain k ¼ gðrÞ
and a2z ¼ �gðrÞ2sgnðsinrÞy�ðrÞ, where gðrÞ :¼
r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y�ðrÞ2 þ 1
p þ 1�

q
. Setting r ¼ �rn in these rela-

tions gives the values (akn and a2zn) of ak and a2z that
are associated with spectral singularities. We list some of
these values in Table I. Because ak and a2z are odd
functions of r and r�n ¼ �rnþ1 for n > 0, we have k�n ¼
�knþ1 and z�n ¼ �znþ1. According to Table I, the small-
est values of ajkj and a2jzj for which a spectral singularity
occurs are respectively ak0 � 1:06 and a2z0 � 2:07. Using
more accurate values for akn and a

2zn that we do not report
here, we have checked that jM22ðknÞj< 10�9 for jnj � 20
and jnj ¼ 102, 103, 104.

For the system we considered in this section, each value
of a2z can support at most one spectral singularity (either
the latter does not exist or it exists for a single energy
value).

A PT -symmetric waveguide.—Consider a rectangular
waveguide with perfectly conducting walls that is aligned
along the z axis and has height 2� as depicted in Fig. 1.
Suppose that the region jzj<� inside the waveguide
is filled with an atomic gas, and a laser beam shining
along the y direction in the region ��< z < 0 is used to
excite the resonant atoms and produce a population inver-
sion. In this way ��< z < 0 and 0< z < � serve as gain
and loss regions, respectively, and the relative permittiv-
ity at the resonance frequency takes the form "ðzÞ ¼ 1þ
i!2

psgnðzÞ=ð2�!Þ for jzj<� and "ðzÞ ¼ 1 for jzj � �,

where !, !p, and � are, respectively, the frequency of

the wave, plasma frequency, and the damping constant
[13]. Alternatively, "ðzÞ ¼ 1� v�;s=!ðzÞ where s :¼
!2

p=ð2�Þ. In [13], the authors use an approximation scheme

to reduce Maxwell’s equations for this system to the
Schrödinger equation for the barrier potential (1). Here
we offer an exact treatment to examine singularities of
the reflection and transmission coefficients for this
waveguide.

Let î, ĵ, k̂ be the unit vectors along the x, y, and
z axes, K :¼ !=c, m 2 Zþ, Km :¼ �m=ð2�Þ,
�mðxÞ :¼ sin½Kmðxþ �Þ�, and � :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 �K2
m

p
. Then

~Eð ~r; tÞ ¼ Reðe�i!t½�i!�mðxÞ�ðzÞ�ĵÞ, and ~Bð~r; tÞ ¼
Reðe�i!t½�mðxÞ�0ðzÞî� �0

mðxÞ�ðzÞk̂�Þ, are transverse
electric waves satisfying the boundary conditions for the

waveguide and solving Maxwell’s equations provided that

�00ðzÞ þ ½K2"ðzÞ �K2
m��ðzÞ ¼ 0; (19)

and � and �0 are continuous functions on the z axis [20].
For jKj>Kn, the solution of (19) has the form (3) with z
and � playing the roles of x and k, respectively. This allows
us to define a transfer matrix Mð�Þ for this system and
introduce the right and left transmission and reflection
amplitudes, Tl;r and Rl;r, associated with (19). These sat-
isfy (6) and (7), and diverge whenever M22ð�Þ ¼ 0.
It is not difficult to see that the right and left reflection

and transmission amplitudes for the propagating transverse
electric wave coincide with Tl;r and Rl;r, respectively.
Therefore, if we can tune the frequency ! of the incoming
wave to the frequency!? of a spectral singularity, then the
amplitude of the wave will diverge as! ! !?. In practice,
this means that sending in a wave of frequency ! � !?

will induce outgoing (transmitted and reflected) waves of
considerably enhanced amplitude. The waveguide then
uses a part of the energy of the laser beam to produce
and emit a more intensive electromagnetic wave. Note that
this effect is fundamentally different from the resonance
effects associated with exciting resonance modes of a
cavity resonator. Unlike the latter, which has a geometric
origin, the spectral singularity-related resonance effect
relies on the existence of a localized region with a complex
permittivity (a complex scattering potential).
The calculation of the transfer matrix Mð�Þ defined by

(19) is analogous to that of the PT -symmetric barrier
potential. In fact, M22ð�Þ takes the form (8) provided that
we set k ¼ �, a ¼ �, and y ¼ sK=ðc�2Þ. In particular, we
can determine the values of ! and s for which the above
resonance phenomenon occurs by setting � ¼ kn and
sK=ðc�2Þ ¼ �yn. This yields ! ¼ !n;m and s ¼ sn;m

where !n;m :¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þK2

m

p
and sn;m :¼ �ck2nyn=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2n þK2
m

p ¼ �c2zn=!n;m. For m ¼ 1, @!p ¼ 0:2 eV,

@� ¼ 1:25 eV, we attain the spectral singularity with
n ¼ 0 for @! ¼ @!0;1 ¼ 5 eV, � � 1004 nm and � �
62 nm. Figure 2 shows the graphs of the logarithm of the
transmission and reflection coefficients as functions of
!=!0;1 for this case. The location and height of the pick

representing the spectral singularity are highly sensitive to
the values of � and �.
We close this section by noting that similar

PT -symmetric waveguides have been considered in
[21,22]. These differ from the one we studied in that in

TABLE I. rn, yn, kn, and zn are, respectively, the numerical
values of r, y�, k, and z that correspond to spectral singularities.
For n � 0, kn and zn are increasing functions of n.

n rn yn akn a2zn

0 2.643 907 00 1.827 655 66 1.064 682 55 2.071 737 13

1 9.116 553 93 0.713 642 71 4.318 236 93 13.307 417 0

2 15.480 455 6 0.490 087 27 7.529 283 04 27.783 097 6

10 65.888 438 5 0.171 676 39 32.824 387 8 184.971 084

100 631.445 619 0.029 017 27 315.689 592 2891.858 52

FIG. 1 (color online). Cross section of a waveguide with gain
(þ) and loss (�) regions in the x-z plane. Arrows labeled by I, R,
and T represent the incident, reflected, and transmitted waves.
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our case the permittivity changes along the direction of the
propagation of the wave (z axis). This is essential for
realizing the spectral singularity-related resonance effect.

Concluding remarks.—In this Letter, we offered for the
first time a simple physical interpretation for the spectral
singularities of complex scattering potentials. In the frame-
work of pseudo-Hermitian quantum mechanics [4], where
one defines unitary quantum systems with a non-Hermitian
Hamiltonian by modifying the inner product of the Hilbert
space, the presence of spectral singularities is an unsur-
mountable obstacle [9]. In contrast, in the standard appli-
cations of non-Hermitian Hamiltonians, spectral singu-
larities are interesting objects to study, because they cor-
respond to scattering states (with real energy) that never-
theless behave like resonant states.

We explored the spectral singularities of a PT -
symmetric potential va;z that admits a realization in the

form of a waveguide. We obtained the values of the physi-
cal parameters of the waveguide and the propagating trans-
verse electric wave for which the system displays the
resonance behavior associated with the spectral singular-
ities of va;z.

Our results call for a more extensive investigation of the
spectral singularities of complex scattering potentials that
can be realized experimentally. This should provide a
means for the observation of the resonance effect that is
foreseen in this Letter. Another line of research is to
explore the spectral singularities of complex periodic po-
tentials [23]. A more basic problem is to study the con-
sequences of spectral singularities for the implementation
of quantum scattering theory. Similar to exceptional points,
the presence of spectral singularities leads to subtleties
associated with the existence of an appropriate resolution
of identity [24]. This problem may be avoided for scatter-
ing wave packets obtained by superposing eigenfunctions
of the Hamiltonian. A general treatment of this problem
requires a separate investigation.
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FIG. 2 (color online). Graphs of log10ðjTr;lj2Þ (solid blue
curves), log10ðjRlj2Þ (dotted red curves), and log10ðjRrj2Þ (dashed
green curves) as a function of !=!0;1, for m ¼ 1, n ¼ 0,
@!0;1 ¼ 5 eV, @!p ¼ 0:2 eV, @� ¼ 1:25 eV. For the figure on

the left (right) � ¼ 1004:17 nm, � ¼ 62:0464 nm (� ¼
1004 nm, � ¼ 62 nm).
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