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The adiabatic theorem provides the basis for the adiabatic model of quantum computation. Recently the

conditions required for the adiabatic theorem to hold have become a subject of some controversy. Here we

show that the reported violations of the adiabatic theorem all arise from resonant transitions between

energy levels. In the absence of fast driven oscillations the traditional adiabatic theorem holds.

Implications for adiabatic quantum computation are discussed.
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A statement of the traditional adiabatic theorem [1–3],
as described in most recent publications, is as follows:
Consider a system with a time-dependent Hamiltonian
HðtÞ and a wave function jc ðtÞi, which is the solution of
the Schrödinger equation (@ ¼ 1)

ij _c ðtÞi ¼ HðtÞjc ðtÞi: (1)

Let jEnðtÞi be the instantaneous eigenstates of HðtÞ with
eigenvalues EnðtÞ. If at an initial time t ¼ 0 the system
starts in an eigenstate jEnð0Þi of the Hamiltonian Hð0Þ, it
will remain in the same instantaneous eigenstate, jEnðtÞi, at
a later time t ¼ T, as long as the evolution of the
Hamiltonian is slow enough to satisfy

max
t2½0;T�

��������hEmðtÞj _EnðtÞi
EnmðtÞ

��������� 1 for all m � n; (2)

where EnmðtÞ � EnðtÞ � EmðtÞ. One can easily show that:
hEmðtÞj _EnðtÞi ¼ hEmðtÞj _HjEnðtÞi=EnmðtÞ. The adiabatic
theorem has recently gained renewed attention as it pro-
vides the basis for one of the important schemes for
quantum computation, i.e., adiabatic quantum computation
[4,5].

Recently, the adiabatic condition (2) has become a sub-
ject of controversy. It was first shown by Marzlin and
Sanders [6] and then by Tong et al. [7] that if a first system
with Hamiltonian HðtÞ follows an adiabatic evolution, a
second system defined by Hamiltonian

�HðtÞ ¼ �UyðtÞHðtÞUðtÞ; UðtÞ � T e�i
R

t

0
HðtÞdt;

(3)

cannot have an adiabatic evolution unless

jhEnðtÞjEnð0Þij � 1; (4)

even if both systems satisfy the same condition (2). Here,
T denotes the time ordering operator. Recently, the valid-
ity of the adiabatic theorem was experimentally examined
[8], and (2) was reported to be neither sufficient nor a
necessary condition for adiabaticity.

These inconsistencies have created debates among re-
searchers [9–12] and motivated a search for alternative

conditions [13–18], reexamination of some adiabatic algo-
rithms [19], or generalizations of the adiabatic theorem to
open quantum systems [20]. While it is valuable to find
new conditions that guarantee adiabaticity in general, it is
important to understand why the traditional adiabatic con-
dition (2) is sufficient for some Hamiltonians, but not for
others. Moreover, from the practical point of view it is
much easier to work with a simple condition like (2) than
some of the other more sophisticated ones. In this Letter,
we relate the reported violations of the traditional adiabatic
theorem to resonant transitions between energy levels. We
further show that in the absence of such resonant oscilla-
tions, the traditional adiabatic condition is sufficient to
assure adiabaticity. Our line of thought is close to that of
Duki et al. [9], but largely extended with rigorous mathe-
matical proofs.
It is well known that fast driven oscillations invalidate

the adiabatic theorem [21]. Consider a simple example of a
two-state system driven by an oscillatory force:

HðtÞ ¼ � 1

2
��z � V sin!0t�x: (5)

We take V to be a small positive number. The exact
instantaneous eigenvalues and eigenstates are

E0;1 ¼ � 1

2
�; jE0;1i ¼

�
��
���

�
; (6)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4V2sin2!0t

p
and �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�� �Þ=2�p

.
To the lowest order in V,� � �þ ð2V2=�Þsin2!0t, �

þ �
1� ðV2=2�2Þsin2!0t, and �� � ðV=�Þ sin!0t. The tradi-
tional adiabatic condition (2) leads to

jhE1j _E0ij
E10

� V!0

�2
j cos!0tj � 1; (7)

which is satisfied if V!0 � �2. Near resonance (!0 � �),
this requires V � �, !0. The adiabatic theorem therefore
states that if at t ¼ 0 the system starts in its ground state
jE0ð0Þi ¼ ð1; 0ÞT , it will stay in the instantaneous ground
state at later times. This, however, is not true as we shall
see below.
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Using the rotating wave approximation, the wave func-
tion of the system at resonance (� ¼ !0) is given by

jc ðtÞi ¼ ei!0t=2 cosVt=2
e�i!0t=2 sinVt=2

 !
: (8)

Therefore, the ground state probability

P0ðtÞ ¼ jhE0ðtÞjc ðtÞij2 � ðcosVtþ 1Þ=2 (9)

oscillates with the Rabi frequency fR ¼ V=2�. At time
T ¼ TR=2 ¼ �=V, the system will be in the excited state
with probability P1 ¼ 1, violating the adiabatic theorem.
Reducing the oscillation amplitude V would only increase
the Rabi period TR, and does not keep the system in the
ground state. Therefore, adiabaticity is only satisfied for a
time T � TR. Indeed some new versions of adiabatic
condition set an upper bound on the time T in order to
guarantee adiabaticity [15,16]. However, as we shall see,
this is not necessary in general. Before that, let us take a
close look at the inconsistency discussed in [6,7].

Let us assume that HðtÞ is a slowly varying Hamiltonian
for which the adiabatic theorem holds. This means that if
at time t ¼ 0, the system starts in an eigenstate jE0

ni
( � jEnð0Þi) of Hð0Þ, at time t, the wave function of the
system will be (see below for proof)

jc nðtÞi ¼ UðtÞjE0
ni � e�i

R
t

0
Enðt0Þdt0 jEnðtÞi: (10)

Hereafter, we use a gauge in which hEnðtÞj _EnðtÞi ¼ 0.
Now consider another system with Hamiltonian (3). The

eigenvalues and eigenstates of the new Hamiltonian are
�EnðtÞ ¼ �EnðtÞ and j �EnðtÞi ¼ UyðtÞjEnðtÞi, respectively.
From (10), we have

j �EnðtÞi � ei
R

t

0
Enðt0Þdt0 jE0

ni: (11)

It was shown in Refs. [6,7] that for system �H the adiabatic
theorem holds only when (4) holds, even if the adiabatic
condition (2) is satisfied. To understand this, let us write �H
in the basis jE0

ni:
�HðtÞ ¼ X

m;n

hE0
mj �HðtÞjE0

nijE0
mihE0

nj: (12)

However

hE0
mj �HðtÞjE0

ni ¼ �hE0
mjUyHðtÞUðtÞjE0

ni
¼ �ihc mðtÞj _c nðtÞi: (13)

Using (10) we find

�HðtÞ ¼ �X
n

EnðtÞjE0
nihE0

nj

� i
X
n;m

e�i!nmðtÞhEmðtÞj _EnðtÞijE0
mihE0

nj; (14)

where !nmðtÞ � 1
t

R
t
0 Enmðt0Þdt0. The second line in (14)

involves rapidly oscillating terms that cause resonant tran-
sitions between the levels. The amplitude of each oscilla-

tory term is jhEmðtÞj _EnðtÞij. Hence satisfying (2) will only
reduce this amplitude and, as we saw before, it does not
eliminate Rabi oscillations and therefore does not keep the
system in its original eigenstate beyond half a Rabi period.

Notice that Eq. (4) is equivalent to jEnðtÞi � ei�ðtÞjE0
ni,

where �ðtÞ is some time-dependent phase. This leads to
hEmðtÞj _EnðtÞi / hE0

mjE0
ni ¼ 0. Therefore, the oscillatory

terms in (14) will all vanish if (4) is satisfied, leading to
an adiabatic evolution in agreement with [6,7].
We now provide a general proof for the adiabatic theo-

rem emphasizing the role of resonant transitions. Let us
write the wave function of the system as:

jc ðtÞi ¼ X
n

anðtÞe�i
R

t

0
Enðt0Þdt0 jEnðtÞi: (15)

For a time-independent Hamiltonian, anðtÞ is a constant
while for a slowly varying Hamiltonian it is a slow func-
tion of time. Substituting (15) into the Schrödinger equa-
tion (1), we find

_a mðtÞ ¼ �X
n�m

anðtÞhEmðtÞj _EnðtÞie�i
R

t

0
Enmðt0Þdt0 :

Integrating over t, we get

amðTÞ � amð0Þ ¼ �X
n�m

Z T

0
dtanðtÞ

� hEmðtÞj _EnðtÞie�i
R

t

0
Enmðt0Þdt0 : (16)

To assure adiabaticity, the right-hand side of this equation
should be small. With the initial condition amð0Þ ¼ �mn,
this would immediately yield (10). Since the exponential
term in the integrand of (16) is a rapidly oscillating func-
tion, if the rest of the terms vary very slowly, the integral
will be small. To make this statement more quantitative, let
us define the right-hand side of the above equation as the
error "m ¼ �Pn�m"nm for the adiabatic evolution, where

"nm �
Z T

0
dtAnmðtÞEnmðtÞe�i

R
t

0
Enmðt0Þdt0 ; (17)

and

AnmðtÞ � anðtÞ hEmðtÞj _EnðtÞi
EnmðtÞ : (18)

Using the Fourier transformation: ~Anmð!Þ ¼R
T
0 dte

i!tAnmðtÞ, we find

"nm ¼
Z d!

2�

Z T

0
dt ~Anmð!ÞEnmðtÞei½!�!nmðtÞ�t: (19)

The integral in (19) is suppressed by the oscillatory ex-
ponential in the integrand, except along a path in the two-
dimensional t-! plane defined by the equation ! ¼
!nmðtÞ, where there is no oscillation. In the presence of

resonant oscillations, ~Anmð!Þ has finite components at
frequencies !nmðtÞ; hence, the contribution from such a
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dominant path becomes

"nm 	
Z T

0
dt ~Anmð!nmðtÞÞEnmðtÞ


 Tmax
t
j ~Anmð!nmðtÞÞEnmðtÞj: (20)

The error therefore grows as a function of T. As a result, to
assure adiabaticity one needs an upper limit for T, as
expected for the case of resonant oscillations. However,
this is not the case for a general system without resonant
oscillations, as we shall see below.

In the absence of such oscillations, AnmðtÞ can be made
as slow as desired by making the evolution slow. In Fourier

space, this makes ~Anmð!Þ sharply peaked at low frequen-
cies with a cutoff frequency !c proportional to the rate of
change of the Hamiltonian. To see this, let us introduce a
new variable s ¼ t=T. Since anðtÞ ¼ anð0Þ þOð"nÞ, to the
lowest order in the small error "n we have [22]

~A nmð ~!Þ � anð0Þ
Z 1

0
dsei ~!s hEmðsÞjd=dsjEnðsÞi

EnmðsÞ ; (21)

where ~! ¼ !T is the dimensionless frequency. The inte-
gral on the right-hand side is independent of T. Let ~!c be

the largest dimensionless frequency of ~Anmð ~!Þ. Therefore,
!c ¼ ~!c=T can be made arbitrarily small by making T
large. Notice that ~!c is a constant that only depends on the
properties of the Hamiltonian and does not depend on the
evolution time T.

If!c � !nmðtÞ, one can neglect! in the exponential in
the integrand of (19) and therefore perform the t and !
integrations independently, yielding

"nm 	!cj ~Anmð0Þj 
 !c

Z T

0
jAnmðtÞjdt


 !cTmax
t
jAnmðtÞj


 ~!cmax
t

��������hEmðtÞj _EnðtÞi
EnmðtÞ

��������: (22)

Therefore, "nm can be made arbitrarily small by only
satisfying the adiabatic condition (2).

The same conclusion can also be reached from a differ-
ent angle. Using integration by parts, Eq. (17) becomes

"nm ¼ ½AnmðTÞe�i
R

T

0
Enmðt0Þdt0 � Anmð0Þ�

�
Z T

0
dt _AnmðtÞe�i

R
t

0
Enmðt0Þdt0


 jAnmðTÞj þ jAnmð0Þj þ
Z T

0
dtj _AnmðtÞj: (23)

The last term above is responsible for the breakdown of the
adiabatic theorem. Let us define ti, i ¼ 1; . . . ;Mnm, as the
solutions to _AnmðtiÞ ¼ 0, whereMnm is the number of zeros
of _AnmðtÞ in the interval [0,T]. Since _AnmðtÞ is monotonic
between ti and tiþ1, we can write

Z T

0
dtj _AnmðtÞj ¼

XMnm

i¼0

��������
Z tiþ1

t1

dt _AnmðtÞ
��������

¼ XMnm

i¼0

jAnmðtiþ1Þ � AnmðtiÞj; (24)

where we have defined t0 ¼ 0 and tMnmþ1 ¼ T. Thus

"nm 
 2
XMnm

i¼0

jAnmðtiÞj 
 2Mnm max
t2½0;T�

jAnmðtÞj


 2Mnm max
t2½0;T�

��������hEmðtÞj _EnðtÞi
EnmðtÞ

��������: (25)

Since the error depends on Mnm, it is important to under-
stand how Mnm depends on the evolution time T.
Let us first consider a Hamiltonian that has an oscillatory

term with frequency !0. Oscillations of the Hamiltonian
will create oscillations in AnmðtÞ and therefore the number
of zeros of _AnmðtÞ will grow with time as Mnm 	!0T. In
that case, without putting an upper bound on T, it is not
possible to limit the error "nm. This is in agreement with
our previous observation for cases involving resonant tran-
sitions, as well as the additional conditions introduced in
Refs. [15,16]. On the other hand, if Mnm does not grow
with time, one can always reduce "nm by just satisfying (2)
without a need to limit T. To see this, let us again use the
dimensionless parameter s ¼ t=T. If by slowing down the
evolution, we only change T and not other parameters in
the Hamiltonian, then the Hamiltonian HðsÞ and its
eigenvalue EnðsÞ and eigenfunctions jEnðsÞi will all be
independent of T. Again to the lowest order in "n, anðtÞ �
anð0Þ and therefore from (18), AnmðtÞ � anð0Þ�
hEmðtÞj _EnðtÞi=EnmðtÞ [22]. The times ti can therefore be
obtained by solving

_A nmðtÞ ¼ anð0Þ
T2

d

ds

hEmðsÞjd=dsjE0ðsÞi
EnmðsÞ ¼ 0: (26)

The number of zeros of this equation, i.e.Mnm, is therefore
finite and independent of T. In that case, (25) assures that
by just satisfying the adiabatic condition (2), the error "nm
can be made as small as desired.
From the above proof it becomes evident that the follow-

ing way of stating the adiabatic theorem removes all of the
inconsistencies: For a HamiltonianHðsÞ, where s ¼ t=T 2
½0; 1�, the evolution of the system starting from an eigen-
state jEnð0Þi is adiabatic provided that

T � max
s2½0;1�

jhEmjdH=dsjEnij
E2
nm

for all m � n: (27)

It should be emphasized that our goal in this Letter was
just to study the sufficiency of the adiabatic condition (2)
for adiabatic evolution without worrying about the scaling
issue. In other words, we do not discuss dependence of the
error "nm on the system size. Scaling becomes important
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for determining the performance of an adiabatic quantum
computer. The exponentially large number of states in-
volved in the sum in (16) requires "nm to be exponentially
small in order to keep the sum small. Fortunately, this does
not put a stringent limitation on the time T. To understand
this, let us write the error as

"nm &
1

T
max
s2½0;1�

jhEmjdH=dsjEnij
E2
nm

: (28)

Typically hEmjdH=dsjEni is exponentially small, other-
wise the curvature of the energy levels

d2En

ds2
¼ 2

X
m�n

jhEmjdH=dsjEnij2
Enm

þ
�
En

��������d
2H

ds2

��������En

�

becomes extremely large due to the sum over an exponen-
tially large number of terms. For the simple example of
adiabatic Grover search [23], it is easy to show that
hEmj _HjE0i ¼ 0 for m> 1, therefore only the first two
energy levels contribute to the adiabatic evolution. For
problems with local interactions, the matrix elements typi-
cally decay exponentially with the energy separation be-
tween the states. This can be checked perturbatively near
the beginning and the end of the evolution (using similar
techniques as in Ref. [24]). It can also be tested numeri-
cally for systems with not very large size [25]. Such
exponential suppression of the matrix elements allows
only a few energy levels to participate in the calculation
of the error. Especially, in adiabatic quantum computation
when the gap between the ground state and the first excited
state becomes much smaller than other energy separations,
those two states dominantly determine the error of the
computation and the evolution time can be determined by
the minimum gap between those, as has been confirmed
numerically for up to 20 qubits [26]. More work is needed
to make these statements mathematically rigorous.
Moreover, a realistic adiabatic quantum computer will al-
ways couple to an environment. Therefore, other methods
[20,26] are necessary to study the evolution of such open
quantum systems.

To summarize, we have shown that the inconsistencies
in the traditional adiabatic theorem reported in the litera-
ture are all closely related to the fact that for systems
subject to fast driven oscillations, resonant transitions be-
tween energy levels cannot be suppressed by just reducing
the amplitude of oscillations, although the adiabatic con-
dition (2) can be satisfied. Since the amplitude of oscilla-
tions determines the Rabi frequency, reducing the
amplitude would only increase the Rabi period. Within a
time of the order of half a Rabi period, the system will
undergo a transition out of its original state. Thus, the Rabi
period sets an upper limit for the total time of the adiabatic
evolution. On the other hand, if the Hamiltonian of the
system does not involve any driven oscillations, there is no
such mechanism to take the system out of its original state

and the traditional adiabatic condition is adequate to guar-
antee adiabaticity.
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