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Spiroplasma swimming is studied with a simple model based on resistive-force theory. Specifically, we
consider a bacterium shaped in the form of a helix that propagates traveling-wave distortions which flip
the handedness of the helical cell body. We treat cell length, pitch angle, kink velocity, and distance
between kinks as parameters and calculate the swimming velocity that arises due to the distortions. We
find that, for a fixed pitch angle, scaling collapses the swimming velocity (and the swimming efficiency) to
a universal curve that depends only on the ratio of the distance between kinks to the cell length.
Simultaneously optimizing the swimming efficiency with respect to interkink length and pitch angle, we
find that the optimal pitch angle is 35.5° and the optimal interkink length ratio is 0.338, values in good

agreement with experimental observations.
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Helices are profoundly involved in the swimming
of many types of bacteria. For example, the classical pic-
ture of bacterial swimming involves long helical filaments
extending out from the inner membrane of the cell [1],
driving the bacterium forward by their rotation. But helices
are also used in other more ingenious ways. In Treponema
pallidum, the spirochetal bacterium responsible for syphi-
lis, rotation of helical filaments encased between the bac-
terial cell wall and the outer membrane leads to periodic
undulations that drive this cell through water and other
viscous fluids. (This is not, presumably, how it crossed the
Atlantic Ocean [2].) The Leptospiraceae rely on a helical
body plan and rotation of tightly coiled filaments to drive
their motility [3]. Generally speaking, it is the dynamics
and shape together, the “swimming strategy,” that is the
key to understanding the motility of helical bacteria. For
the flagellaless family of plant pathogens represented by
Spiroplasma, the precise propulsive strategy was shrouded
in mystery until careful observations [4,5] revealed that
these tiny organisms processively flip the chirality of re-
gions of their helical bodies, generating pairs of kinks mov-
ing down the cell body [Fig. 1(a)]. The internal propulsive
mechanism underlying this peculiar swimming strategy is
still unclear, as is the quantification of its motility.

Spiroplasma swimming is realized by the propagation of
a pair of kinks along the body axis of the cell, and the
bacterium is propelled by the hydrodynamic force as the
fluid associated with the kinks moves rearward with the
“body wave.” Kinks start at the same end of the cell
(front), and travel toward the other end (back). As the
kink propagates, the cell changes direction through an
angle related to the pitch angle of the helix. Because of
the unbalanced viscous drag between different portions of
the cell body separated by kinks, eventually the cell swims
in a zigzag path. The helical transformation requires a cell
to rotate about its body axis during kink propagation [5-7].
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PACS numbers: 47.63.Gd, 87.85.gf, 87.85.gj

In this Letter we use the experimentally observed ge-
ometry of Spiroplasma to explore its swimming behavior
for a range of kinematic deformations. We consider a
helically shaped cell of fixed pitch angle and helix diame-
ter. To swim, the bacterium flips the handedness of its helix
beginning at one end. This change in helicity propagates
toward the back of the cell with a uniform velocity, U, =
10.5 = 0.3 wm/s [5]. After a time f;, the front of the cell
reverts to its original handedness and this change in helic-
ity also propagates toward the back of the cell with the
same kink velocity. The distance between the kinks is L, =
Uity, and only an integer number of turns is considered.
We treat Uy, L, and the cell length L. as parameters and
use resistive-force theory (RFT) to calculate the swimming
speed and trajectory as a function of these parameters. Our
model is complementary to the work by Wada and Netz [§]
where slender-body hydrodynamics [9] was used to ex-
plore the dependence of swimming speed on the pitch
angle /. By varying the distance between kinks, we exam-
ine both the geometry and kinematics of the swimming

FIG. 1 (color online). (a) Spiroplasma in differential interfer-
ence contrast (image courtesy of J. W. Shaevitz). (b) Schematic
of helical geometry. D is the helix diameter, D + d is the outer
coil diameter (D = 0.138 um, d = 0.20 wm). Here the bend
angle « and pitch angle ¢ satisfy o = 7 — 2.
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process. It was found experimentally that the kink velocity
U, [4,5] and the interkink distance L; [5] show a remark-
able consistency—what determines this preference? Our
results demonstrate that the maximum propulsive effi-
ciency is achieved when the pitch angle is around 35.5°
(in agreement with [8]) and the ratio between interkink
length and cell-body length is around 0.338, which is
consistent with experimental observations and suggests
that the kinematics of Spiroplasma has been evolutionarily
tuned.

Any helix can be described by its pitch p and helix

radius r. One helical repeat in the arclength s is € =

Vp? + 472>, When two helices of differing pitch are
concatenated, such that the tangent and normal vectors
are continuous, a kink is formed [6,10]. The bend angle
a between the two axes in this construction is @ = 7 —
24 [Fig. 1(b)]. The parameters employed in the calcula-
tions are p = 0.62 um, r = D/2 = 0.069 um, and ¢y =
35° [4,5]. For the numerical integration, the cell body is
discretized into straight-line elements. According to RFT
[11,12], the resistance force acting on a unit length of rod
is given by f=—-[27u/In(2/€)]2I —AA)-U+
O[In"2(2/€)], where U is the local velocity, I is the unit
tensor, € is the slenderness ratio of rod diameter to length,
A is the unit tangent vector, and u is viscosity. The total
force and momentum on the unrestrained cell body is zero,
ie., [5f(s)ds=0, [5M(s)ds=0. The translational and
rotational velocities of the cell body can be solved from the
resulting system of linear equations. To verify that the
implementation of the model has been properly made,
the translational velocity of a rigid helix with angular
velocity @ around its body axis is calculated with the
same numerical code. Since the total force on the rotating
helix is zero, i.e., [§ f(s)ds = 0 (L is the total length of the
rigid helix), the translational velocity of the helix is U =
Bfw, where B = sin? cosyr/[27(1 + sin®)] [8]. The
numerical results match this resistive-force solution with
relative errors less than 0.05% under our typical spatial dis-
cretization. A slender-body theory (SBT) calculation, us-
ing the straight-line elements, was also performed to ac-
count for hydrodynamic interactions. Based on the afore-
mentioned model, a number of dynamical questions on the
swimming of Spiroplasma canbe formulated and addressed.

Typical experimental and simulated displacement
curves during one swimming cycle of Spiroplasma are
shown in Fig. 2(a). Here the displacement is defined as
the projected center-of-mass position. For comparison with
the experimental data, our numerical simulation results are
also smoothed with a 175-ms boxcar filter [5,13]. Using the
parameters given above, our simulations agree well with
the corresponding experimental results [14], giving an
average velocity of about 3 wm/s, close to the observed
cell velocity, 3.3 = 0.2 um/s [5].

It is observed experimentally that the speed is decreased
when two kinks are present as compared with when only
one kink is present. This key feature of the displacement

curve is reproduced in the numerical simulations
[Fig. 2(a)]. Our simulations show that the cell velocity in-
creases linearly with kink velocity, and that the ratio of cell
velocity to kink velocity is constant for fixed interkink
length, with the proportionality constant varying with in-
terkink length, consistent with the experimental reports
[4,5].

In order to delineate the effect of dynamically chang-
ing geometry on Spiroplasma motility, two dimensionless
parameters are introduced. One is the ratio of cell velocity
U, to kink velocity U,; the other is the ratio of interkink
length L, to cell-body length L. We find that all the data
fall on a single curve after the results from different cell-
body lengths and interkink lengths are taken together
[Fig. 2(b)]. The curve describes a velocity ratio that in-
creases with length ratio at small values, and then begins to
decrease with length ratio after reaching a peak value.
From Fig. 2(b), the maximum velocity ratio of the data-
fitted curve is around 0.323 when the length ratio is about
0.32. The fact that the velocity ratios and length ratios
observed in the experiment fall close to the aforementioned
value suggests that wild-type Spiroplasmas have optimized
their geometry to achieve the “fastest state” in the course
of evolution. The study of Wada and Netz [8] suggests an
optimized pitch angle as well, the treatment of which goes
beyond the reach of RFT for pitch angles greater than
roughly 35° [15,16]. The full optimization over both length
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FIG. 2 (color online). (a) A simulated displacement curve
(Ly =2¢, L. =7¢, and U, = 12{/s). (b) Velocity ratio and the
corresponding envelope angle, as a function of the length ratio
for different body lengths, from RFT (fit by solid line); maxi-
mum velocity ratio is located where envelope and pitch angle are
equal.
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FIG. 3 (color online). Velocity ratio as a function of kink
length ratio and pitch angle. Contour lines are velocity-ratio
isolines. Experimental observations are centered within the error
ellipse.

ratio and pitch angle (Fig. 3) using our SBT code gives a
maximum velocity ratio at L, /L, = 0.338 and ¢ = 35.5°.
These values are consistent with the experimental values
0.303 = 0.051 and 34.8 = 1.4°, respectively [5].

The velocity ratio can be calculated in RFT in the limit
that the length ratio approaches one. As the length ratio
goes to one, there is effectively only one kink propagating
along the cell body at any given time. In this case,
Spiroplasma can be treated as a filament consisting of
two helical sections, one right handed and the other left
handed. The two helical sections rotate around their re-
spective axes with the opposite sense. The total transla-
tional velocity is the vector sum of these two components
with an interior angle 2. From geometrical considera-
tions, the kink velocity U, can be represented as a function
of rotational velocity w, i.e., U, = 2wr/ tanis. Using the
previously mentioned translation velocity of a rigid helix
(Bfw) the total velocity can be estimated to be
2B{w cosyr, and the corresponding velocity ratio reduces
to 27B = sin® ¢ cost /(1 + sin®¢). For a pitch angle of
35°, this ratio is around 0.202, not far from the simulation
result of 0.24. At a length ratio of one, the kinematic
asymmetry between the left-handed interkink length and
the right-handed extra-kink length vanishes, and a chirality
variable y = (L, — L;)/(L. + L) can be used to study
the velocity ratio on both sides of y = 0 [17]. We note in
passing that the entire velocity-ratio curve is in excellent
empirical agreement with a quartic polynomial [18]

U, /U, = 0.24 + 0.73¢2 — 1.61¢* (1)

[the solid curve in Fig. 2(b)] where ¢» = tan™ ' y.

Not only translation, but also rotation of the cell body
must satisfy the dynamic balance, i.e., zero force and
torque. At the beginning of a kink cycle, one end of the
cell-body axis traces out a circular arc (see Fig. 4). The
maximum angle swept out, we term the envelope angle.
We use this concept in Fig. 2(b), where the dashed curve
shows that the envelope angle increases with length ratio.
Figure 2(b) also shows that the velocity ratio achieves its
maximum at the length ratio whose envelope angle equals
the pitch angle (see the dot-dashed line).

Experiments on Spiroplasma do not observe more than
two kinks along the cell body at one time. It is therefore
interesting to consider the swimming efficiency as a func-
tion of the number of kinks per cycle in order to determine
whether a two-kink cycle is optimal. A standard definition
of swimming efficiency compares the energy dissipated by
dragging the appropriate rigid cylinder through fluid to the
power dissipated by the actual swimmer [8,12,19]. This
definition compares a swimming object to a nonswimmer
and also does not account for the energy dissipated to
create the swimming motion. Since an unknown mecha-
nism is responsible for producing the traveling kinks in
Spiroplasma, we assume that there is a fixed net energy 6 E
required to produce a pair of kinks [20] and that this
mechanism sets a uniform kink velocity. Under these as-
sumptions, we hypothesize that biology tries to maximize
the distance traveled per unit energy expended. Therefore,
we consider the fuel mileage y = distance traveled per
energy consumed (ndE + the energy dissipated by the
fluid, where 7 is the number of kink pairs per cycle), which
we compute in terms of nanometers traveled per ATP
burned [21]. First, ignoring the energy to create the kinks
(6E =~ 0), we calculate y as a function of the length ratio
(solid curve in Fig. 5). The fuel mileage from different
cell lengths can all be collapsed onto one curve by con-
structing a scaling factor from a power of the slenderness
ratio € (=d/L,) as € °y(L,, L.) with § = 2. In both RFT
and SBT, we find that the fuel mileage is maximized at a
length ratio of around 0.3, although the method’s different
velocities lead to shifted y values: yrpr/yspr = 3-3.4.
Using RFT, we find that a single double kink cycle requires
50-100 ATPs worth of energy and the cell moves about
26 nm/ATP, whereas SBT gives 150-340 ATPs per cycle

FIG. 4 (color online). The trace swept
out by the cell-body axis at eight differ-
ent interkink lengths 2-9¢ (for cell
length 10€). Three snapshots of the cell
body are superposed in the leftmost trace
(Ly = 2€). Yellow or light gray lines
indicate the trajectories of the two kinks.
The envelope angle is indicated.
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FIG. 5. Fuel mileage as a function of the length ratio. The solid
curve and circle data points show the case with L. = 10 (left
ordinate). Using the scaling factor €%, the results from all cell
lengths can be collapsed. Here € is the slenderness ratio and the
exponent 6 = 1.90 = 0.01 [23].

and the cell moves 8 nm/ATP. Interestingly, the latter is
the fuel mileage of a single kinesin molecule [22]. When
O E is small, we find that the fuel mileage for a 4-kink cycle
is larger than for a 2-kink cycle. However, when 8F is
greater than 40 ATPs, then a 2-kink cycle is optimal.
Therefore, we expect that the mechanism producing the
double kink must require at least 40 ATPs per cycle.

In this Letter, we investigated via a numerical study
the swimming of Spiroplasma with a model based on
resistive-force theory and the kinematic deformations of
Spiroplasma. The key features of Spiroplasma swimming
are well reproduced with this model, and the simulation
results agree quantitatively with the observed experimental
data. The important effects of dynamic geometry on the
motility of Spiroplasma are explored, and the motility
efficiency is shown to assume the highest possible value
given the kinematics observed in experiments. One impli-
cation is the optimization of the geometry and kinematics
of Spiroplasma during the course of evolution.
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