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Biochemical networks can respond to temporal characteristics of time-varying signals. To understand

how reliably biochemical networks can transmit information we must consider how an input signal as a

function of time—the input trajectory—can be mapped onto an output trajectory. Here we estimate the

mutual information between input and output trajectories using a Gaussian model. We study how reliably

the chemotaxis network of E. coli can transmit information on the ligand concentration to the flagellar

motor, and find the input power spectrum that maximizes the information transmission rate.
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Cells continually have to respond to a wide range of
intra- and extracellular signals. These signals have to be
detected, encoded, transmitted, and decoded by biochemi-
cal networks. In the absence of biochemical noise, a par-
ticular input signal will lead to a unique output signal,
allowing the cell to respond appropriately. Recent experi-
ments, however, have vividly demonstrated that biochemi-
cal networks can be highly stochastic [1], and a key
question is therefore how reliably biochemical networks
can transmit information in the presence of noise.

To address this question, we must recognize that the
message may be contained in the temporal dynamics of
the input signal. Awell-known example is bacterial chemo-
taxis, where the concentration of the intracellular messen-
ger protein depends not on the current ligand concentra-
tion, but rather on whether this concentration has changed
in the recent past [2]—the response of the network thus
depends on the history of the input signal. Moreover, the
input signal may be encoded into the temporal dynamics of
the signal transduction pathway. For example, stimulation
of the rat PC-12 system with a neuronal growth factor gives
rise to a sustained response of the Raf-Mek-Erk pathway,
while stimulation with an epidermal growth factor leads to
a transient response [3]. In all these cases, the message is
encoded not in the concentration of some chemical species
at a specific moment in time, but rather in its concentration
as a function of time. Importantly, whether the processing
network can reliably respond to a signal depends not only
on the instantaneous value of the signal, but also on the
time scale over which it changes. In general, the input and
output signals of biochemical networks are time-
continuous signals with nonzero correlation times. To
understand how reliably biochemical networks can trans-
mit information, we need to know how accurately an input
signal as a function of time—the input trajectory—can be
mapped onto an output trajectory. In this article, we take an
information theoretic approach to this question.

A natural measure for the quality of information trans-
mission is the mutual information between the input signal
I and the network response O, given byMðI;OÞ¼HðOÞ�
HðOjIÞ [4]. Here, HðOÞ � �R

dOpðOÞ logpðOÞ, with

pðOÞ the probability distribution of O, is the information
entropy of the output O; HðOjIÞ � �R

dIpðIÞ�R
dOpðOjIÞ logpðOjIÞ is the average (over inputs I) in-

formation entropy of O given I, with pðOjIÞ the condi-
tional probability distribution of O given I. Recently, the
mutual information between the instantaneous values of
the input and output signals of biochemical networks has
been investigated [5,6], although in these studies the tem-
poral correlations in the input signals were ignored. Here
we investigate the mutual information between input and
output trajectories.
Mutual information between trajectories.—We consider

a biochemical network in steady state which has one input
species S with copy number S and one output species X
with copy number X. The mutual information between
input and output trajectories is found by taking the possible
input and output signals I and O to be the possible trajec-
tories SðtÞ and XðtÞ:

MðS; XÞ ¼
Z

DSðtÞ
Z

DXðtÞpðSðtÞ; XðtÞÞ

� log
pðSðtÞ; XðtÞÞ
pðSðtÞÞpðXðtÞÞ : (1)

Calculating the mutual information between trajectories is
in general a formidable task, given the high dimensionality
of the trajectory space. However, for a Gaussian model,
which we will employ here, the mutual information can be
obtained analytically.
In this Gaussian model, it is assumed that the input

signal consists of small temporal variations around some
steady-state value, obeying Gaussian statistics. This limits
our approach, but seems a reasonable simplification given
that the input statistics have not been measured for most, if
not all, biological systems. Moreover, we assume that the
coupling between the components can be linearized and
that the intrinsic noise is small and Gaussian, according to
the linear-noise approximation [7]; recent modeling stud-
ies have shown this gives a good description of the noise
properties of a large class of biochemical networks, even
when the copy numbers are as low as ten [6,8]. Under these
assumptions the joint probability distribution of the input
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and output signals is described by a multivariate Gaussian,

pðvÞ ¼ 1

ð2�ÞNjZj1=2 exp

�
� 1

2
vTZ�1v

�
: (2)

The vector v � ðs;xÞ, with s ¼ ðsðt1Þ; sðt2Þ; . . . ; sðtNÞÞ con-
structed from the input signal sampled at times t1; . . . ; tN ,
and x ¼ ðxðt1Þ; xðt2Þ; . . . ; xðtNÞÞ; sðtÞ and xðtÞ are the devi-
ations of S and X from their steady-state values, hSi and
hXi. The covariance matrix Z has the form

Z ¼ Css Cxs

Csx Cxx

� �
; (3)

where C�� is an N � N matrix with elements C��
ij ¼

C��ðti � tjÞ ¼ h�ðtiÞ�ðtjÞi. In the limit that the input

and output signals are time continuous, the mutual infor-
mation rate between the input and output trajectories
Rðs;xÞ ¼ limT!1Mðs;xÞ=T is given by [9]

Rðs;xÞ ¼ � 1

4�

Z 1

�1
d! ln

�
1� jSsxð!Þj2

Sssð!ÞSxxð!Þ
�
; (4)

where the power spectrum S��ð!Þ is the Fourier transform
of C��ðtÞ. Measuring the output signal as a function of

time, Rðs;xÞ is the rate at which the information on the
input trajectory increases with time; importantly, Rðs;xÞ
takes into account temporal correlations in the input and
output signals. We emphasize that Eq. (4) is exact only for
linear systems with Gaussian statistics. Importantly, how-
ever, Eq. (4) can also be applied to systems which do not
obey Gaussian statistics and to nonlinear systems; in these
cases it provides a lower bound on the channel capacity of
the network [10].

A biochemical network differs from a channel in tele-
communication or electronics, in that the reaction that
detects the input signal may introduce correlations between
the signal and the intrinsic noise of the reactions that
constitute the processing network [8]; these correlations
are a consequence of the molecular character of the com-
ponents and thus unique to (bio)chemical systems. If the
detection reaction does not introduce correlations, then the
power spectrum of the output signal Sxxð!Þ is given by the
spectral addition rule [8]:

Sxxð!Þ ¼ Nð!Þ þ g2ð!ÞSssð!Þ: (5)

Here,Nð!Þ is the intrinsic noise of the processing network,
Sssð!Þ is the power spectrum of the input signal, and
g2ð!Þ ¼ jSsxð!Þj2=Sssð!Þ2 is the frequency-dependent
gain. Identifying the spectrum of the transmitted signal
as Pð!Þ ¼ g2ð!ÞSssð!Þ, Eq. (4) can be rewritten as

Rðs;xÞ ¼ 1

4�

Z 1

�1
d! ln

�
1þ Pð!Þ

Nð!Þ
�
; (6)

a well-known result for a time-continuous Gaussian chan-
nel [11]. When the detection reaction does introduce cor-
relations between the input signal and the noise of the
processing network, one can still define g2ð!Þ and Pð!Þ
as above and apply Eq. (6). However, in this caseNð!Þ and
g2ð!Þ are not intrinsic properties of the network, but also
depend on the statistics of the input signal.
Network motifs.—The three elementary detection motifs

shown in Table I [8] illustrate a number of characteristics
of the transmission of trajectories. As a simple example of
a time-continuous input signal with a nonzero correlation
time, we take the dynamics of S to be a Poissonian birth-
and-death process; for large copy numbers, this gives dis-
tributions that are approximately Gaussian.
Motif I describes the reversible binding between, for

example, a ligand and a receptor, or an enzyme and its
substrate. For this motif only we take the input signal to be
the total number of both bound and unbound molecules
STðtÞ ¼ SðtÞ þ XðtÞ. We find that this motif acts as a low-
pass filter for information. Specifically, the gain-to-noise
ratio g2ð!Þ=Nð!Þ, which determines how accurately an
input signal at frequency ! can be transmitted, is approxi-
mately constant at low frequencies but decays as !�2 for
high frequencies. Since input signals of biochemical net-
works are commonly detected via this motif, this result
suggests that high-frequency input signals are typically not
propagated reliably.
Motif II describes the scenario in which the signaling

molecule is deactivated upon detection. An important ex-
ample is activation of membrane receptors by ligand bind-
ing followed by endocytosis. If the input signal is a
Poissonian birth-and-death process, the mutual informa-
tion between instantaneous values of s and x is zero [12]—
x gives no information about the current value of s. Indeed,
to understand how cells can use this motif to transmit
information, we must consider the mutual information
between input and output trajectories. Interestingly, for
this motif Nð!Þ vanishes at high frequencies, while
g2ð!Þ approaches a constant value; the gain-to-noise ratio
thus diverges at high frequencies, meaning that this motif
can reliably transmit rapidly varying input signals [13].
Motif III is a coarse-grained model for enzymatic

reactions or gene activation; the enzyme-substrate or
transcription-factor-DNA binding reaction, respectively,
has been integrated out. For this motif, which in contrast

TABLE I. Three elementary detection motifs. The input signal is modeled via ;!k S and S!� ;.
Motif Reaction g2ð!Þ Nð!Þ jSsxð!Þj2=Sssð!ÞSxxð!Þ
(I) SþW Ð

�¼kfW

�
X ½ �ð�þ�þ�Þ

!2þð�þ�Þ2þ��
�2 2�hSi

!2þð�þ�Þ2þ��
��ð�þ�þ�Þ2

½!2þð�þ�Þ2þ���½!2þ�ð�þ�Þ�
(II) S!� X!� ; �2½!2þð�þ�Þ2�

4ð�þ�Þ2ð!2þ�2Þ
�hSið4�þ3�Þ

2ð�þ�Þð!2þ�2Þ
�

4ð�þ�Þ
(III) S!� Sþ X, X!� ; �2

!2þ�2
2�hSi
!2þ�2

��
!2þ�ð�þ�Þ
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to the other two obeys the spectral addition rule [Eq. (5)],
g2ð!Þ and Nð!Þ have the same functional dependence on
!. Hence, g2ð!Þ=Nð!Þ is independent of !, which means
that this motif can transmit signals at all frequencies with
the same fidelity.

For both motifs II and III the mutual information be-
tween trajectories does not depend on the deactivation rate
� of the readout component X; g2ð!Þ and Nð!Þ depend in
the sameway on�. The information on the input trajectory
sðtÞ is encoded solely in the statistics of the production
events of X; decays of X occur independently of S and
hence provide no new information about sðtÞ. These ob-
servations may suggest that if an input signal is detected
via one of these motifs, the deactivation rate of X is not
important. However, if the information encoded in xðtÞ
needs to be transmitted to a downstream pathway, then
this transmission rate will in general depend on �.

Bacterial chemotaxis.—A classical example of a bio-
logical system in which not only the instantaneous value
of the input signal is important, but also its history, is the
chemotaxis system of Escherichia coli [2]. The messenger
protein CheY is phosphorylated (CheYp) by the kinase
CheA and dephosphorylated by the phosphatase CheZ.
The kinase activity is rapidly inhibited by receptor-ligand
binding, allowing the system to respond to changes in
ligand concentration on short time scales. Receptor meth-
ylation slowly counteracts the effect of ligand binding on
CheA activity, allowing the system to adapt to changes in
ligand concentration on longer time scales. An open ques-
tion is how this network processes the ligand signal in the
presence of noise [14]. Here, we study how reliably the
chemotaxis network can transmit information in time-
varying input signals.

Recently, Tu et al. have shown that a minimal model can
accurately describe the response of the chemotaxis system
to a wide range of time-varying input signals [15]. In this
model it is assumed that receptor-ligand binding and the
kinase response are much faster than CheYp dephos-
phorylation and receptor (de)methylation; hence the kinase
activity is in quasi-steady state. Linearizing around
steady state, we obtain the following model [15]:

aðtÞ ¼ �mðtÞ � �lðtÞ; (7)

dm

dt
¼ � aðtÞ

�m
þ �mðtÞ; (8)

dy

dt
¼ 	aðtÞ � yðtÞ

�z
þ �yðtÞ: (9)

Here, aðtÞ and mðtÞ are, respectively, the deviations of the
fraction of active kinases and the receptor methylation
level from their steady-state values; lðtÞ and yðtÞ are the
fractional changes in the ligand and CheYp concentrations

relative to steady-state levels; �m and �z are the time scales
for receptor (de)methylation and CheYp dephosphoryla-

tion, with �m > �z; �m and �y are Gaussian white-noise

sources that are independent of one another, and of the

ligand signal: h�ðtÞi ¼ 0; h�ðtÞ�ðt0Þi ¼ h�2i
ðt� t0Þ;
h�mðtÞ�yðt0Þi ¼ h�ðtÞlðt0Þi ¼ 0. The statistics of the input

signal are described by the power spectrum Sllð!Þ. This
system obeys the spectral addition rule [Eq. (5)], and the
power spectrum of y is given by

Syyð!Þ ¼ Nl!yð!Þ þ g2l!yð!ÞSllð!Þ; (10)

with Nl!yð!Þ and g2l!yð!Þ being intrinsic properties of the
chemotaxis network:

g2l!yð!Þ ¼ �2	2!2

ð!2 þ ��2
z Þð!2 þ �2=�2mÞ

; (11)

Nl!yð!Þ ¼ �2	2h�2
mi þ ð�2=�2m þ!2Þh�2

yi
ð!2 þ ��2

z Þð!2 þ �2=�2mÞ
: (12)

Equation (11) shows that the gain is small at low frequen-
cies, due to adaptation of the kinase activity via receptor
methylation [15] [Fig. 1(a)]. This network is therefore
unable to respond to low-frequency variations in the ligand
signal. As noted in [15,16], the gain also decreases at high
frequencies, due to the time taken for CheYp dephos-

phorylation by CheZ. However, we see that the noise
also decreases with increasing frequency. In fact, at high
frequencies the methylation dynamics can be ignored, and
the dynamics of CheYp are approximately those of

motif III, discussed above; g2l!yð!Þ=Nl!yð!Þ increases to
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FIG. 1. Information transmission in the E. coli chemotaxis
network. The network gain g2ð!Þ (dashed line), noise Nð!Þ
(dotted line), and g2ð!Þ=Nð!Þ (full line) are shown between
(a) ligand and CheYp concentrations, and (b) ligand and motor

bias. (c) Water filling approach for the optimal input signal [11].
The optimal power spectrum, subject to a total power constraint
�2

ll ¼
R1
�1 Sllð!Þd!, is Sllð!Þ ¼ L� Nl!bð!Þ=g2l!bð!Þ, with

L chosen such that the shaded area matches �2
ll. (d) Rðl;bÞ

evaluated numerically for different �2
ll values when the corre-

sponding optimal input power spectrum is chosen. Parameter
values were estimated from [15,16]: � ¼ 2:7, � ¼ 1:3, �m ¼
8 s, h�2

mi ¼ 10�4 s�1, 	 ¼ 8 s�1, �z ¼ 0:5 s, h�2
yi ¼

0:002 s�1, k ¼ 1 s�1, �b ¼ 0:5 s, h�2
bi ¼ 0:5 s�1.
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a constant value showing that, in contrast to the conclu-
sions of [15], high-frequency signals can be reliably en-
coded in the trajectory yðtÞ.

However, the ultimate response of this system is that of
the flagellar motor. Binding of CheYp to the motor in-

creases the tendency of the motor to switch to the clock-
wise state, which causes the bacterium to ‘‘tumble’’ and
change direction. Assuming that CheYp binding to the

motor is fast, and that the motor response can be linearized,
the clockwise bias of the motor bðtÞ is determined by

db

dt
¼ kyðtÞ � bðtÞ

�b
þ �bðtÞ; (13)

where �b is the typical motor switching time and �b

represents Gaussian white noise, uncorrelated from �m

and �y. Applying Eq. (5), the power spectrum of the

motor is Sbbð!Þ ¼ Ny!bð!Þ þ g2y!bð!ÞSyyð!Þ, where

Ny!bð!Þ ¼ h�2
bi=ð!2 þ ��2

b Þ is the intrinsic noise of the

motor, and g2y!bð!Þ ¼ k2=ð!2 þ ��2
b Þ is the frequency-

dependent gain of the motor. Inserting Syyð!Þ of Eq. (10),
we see that the total noise added between the ligand
and the motor is given by Nl!bð!Þ ¼ Ny!bð!Þ þ
g2y!bð!ÞNl!yð!Þ, while the overall gain of the network is

g2l!bð!Þ ¼ g2l!yð!Þg2y!bð!Þ.
Figure 1(b) shows that g2l!bð!Þ is large at frequencies

��1
m & ! & ��1

z � ��1
b , while Nl!bð!Þ monotonically de-

creases with increasing frequency. Importantly, at high
frequencies ! � ��1

z , ��1
b the gain g2l!bð!Þ �!�4 since

both g2l!yð!Þ and g2y!bð!Þ decrease as !�2, while

Nl!bð!Þ �!�2 since the dominant noise contribution is
the intrinsic noise of motor switching Ny!bð!Þ; as a result,
g2l!bð!Þ=Nl!bð!Þ scales as !�2. Hence, while high-

frequency fluctuations in lðtÞ are reliably encoded in the
trajectory yðtÞ, this information is not propagated to the
motor. In essence, the high-frequency variations of lðtÞ are
filtered by the slow dynamics of CheYp dephosphorylation

and motor switching, and are therefore masked by the
inevitable intrinsic noise of motor switching.

The goal of the chemotaxis network is to determine
whether the ligand concentration has increased or de-
creased. This binary decision has to be made on the
time scale of a motor switching event, which means that
the network should recover at least 1 bit of information
from the input trajectory over this time scale: Rðl;bÞ>
1 bit=�b ¼ 2 bits s�1. Our results allow us to predict the
input power spectrum Sllð!Þ that maximizes Rðl;bÞ for a
given power constraint �2

ll [see Fig. 1(c)], which is peaked

around ! � 1 s�1. Figure 1(d) shows the corresponding
optimal information rate as a function of �2

ll, and suggests

that to achieve Rðl;bÞ> 2 bits s�1 a signal variance of at
least �2

ll � 2:5 is required. The predicted form of the gain-

to-noise ratio and the optimal input power spectrum could
be tested by exposing E. coli cells to oscillating stimuli
with different frequencies, for example in a microfluidic

device, and measuring the (cross) power spectra of the
motor bias and the stimulus.
The input signal that a bacterium perceives depends not

only on the spatiotemporal correlations of the ligand con-
centration in the environment but also on its swimming
behavior, which in turn depends on the input signal itself:
as Fig. 1(b) shows, E. coli is unable to reliably respond to
high-frequency (! � ��1

z , ��1
b ) or low-frequency (! �

��1
m ) stimuli. This means that, in order to find food, E. coli

should swim neither too slowly nor too fast. Specifically,
our predicted optimal input spectrum suggests that chemo-
taxis is most efficient when the spatiotemporal correlations
of the ligand and the swimming speed of the bacterium are
matched to give a typical frequency of the ligand signal of
about ! � 1 s�1. Further work is needed to study whether
nature has optimized this feedback between swimming and
signaling, and to explore the naturally occurring chemo-
attractant distributions that E. coli would experience.
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