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We have proposed an exactly solvable quantum spin-3=2 model on a square lattice. Its ground state is a

quantum spin liquid with a half-integer spin per unit cell. The fermionic excitations, dubbed as ‘‘spinons’’,

are gapless with a linear dispersion, while the topological ‘‘vison’’ excitations are gapped. Moreover, these

massless fermionic spinon excitations are topologically stable. Thus, this model is, to the best of our

knowledge, the first exactly solvable model of half-integer spins whose ground state is an ‘‘algebraic spin

liquid.’’
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The term ‘‘spin liquid’’ is widely used to give sharp
meaning to the more general intuitive notion of a Mott
insulator; a spin liquid is an insulating state that cannot be
adiabatically connected to a band insulator, i.e., to an
insulating Slater determinant state. In a system that pre-
serves time reversal symmetry, any insulating state with an
odd number of electrons (or a half-integer spin) per unit
cell is a spin liquid. Interesting proposals [1,2] have been
made concerning the relevance of such states to the theory
of high temperature superconductivity in the cuprates and
other materials. Indeed, various spin liquid phases have
been proposed, which are distinguished by the character of
any gapless spinons and the exchange statistics of the
topological vison excitations.

Since they are new and ‘‘exotic’’ quantum phases of
matter, it is desirable to construct solvable models with
short range interactions with stable spin liquid ground-state
phases. A breakthrough occurred when Moessner and
Sondhi [3] demonstrated the existence of a gapped spin
liquid ground state in the quantum dimer model [4], analo-
gous to the short range version of the RVB state [5,6]. An
exactly solvable spin-1=2model in a gapped Z2 spin-liquid
phase was later constructed by Wen [7]. However, much of
the recent interest, spurred in part by the possible observa-
tion of such a state in �� ðETÞ2Cu2ðCNÞ3 [8–10] and
ZnðCuÞ3ðOHÞ6Cl2 [11], has focused on spin liquids with
gapless spinon excitations, so-called ‘‘algebraic spin
liquids.’’

The exactly solvable Kitaev model on the honeycomb
lattice [12] can exhibit gapless excitations. However, be-
cause the honeycomb lattice has two sites per unit cell, this
model has an integer spin, hence an even number of
electrons per unit cell. In the present paper we construct
an exactly solvable model, in much the same spirit as the
Kitaev model, whose ground state is a spin liquid with an
odd number electrons per unit cell and stable gapless
fermionic spinon excitations. To the best of our knowledge,
this is the first exactly solvable model with this sort of spin
liquid ground state algebraic spin liquid.

The Kitaev model has a spin-1=2 on each site of a
trivalent lattice, where the coordination number is dictated

by the existence of three Pauli matrices. In order to study a
model on a square lattice, we instead consider a model with
a spin-3=2 on each lattice site. The resulting larger Hilbert
space, with 4 spin polarizations per site, permits us to
express the model in terms of the 4� 4 anticommuting
Gamma matrices, �a (a ¼ 1; . . . ; 5) which form Clifford
algebra, f�a;�bg ¼ 2�ab. Specifically, the 5 Gamma ma-
trices can be represented [13] by symmetric bilinear com-
binations of the components of a spin 3=2 operator, S�, as

�1 ¼ 1ffiffiffi
3

p fSy; Szg; �2 ¼ 1ffiffiffi
3

p fSz; Sxg;

�3 ¼ 1ffiffiffi
3

p fSx; Syg; �4 ¼ 1ffiffiffi
3

p ½ðSxÞ2 � ðSyÞ2�;

�5 ¼ ðSzÞ2 � 5

4
:

(1)

Model Hamiltonian.—We define our model on a square
lattice, with a spin-3=2 on each site, and corresponding �
matrices defined as in Eq. (1). In terms of these,

H ¼ X
i

½Jx�1
i�

2
iþx̂ þ Jy�

3
i�

4
iþŷ�

þX
i

½J0x�15
i �25

iþx̂ þ J0y�35
i �45

iþŷ� � J5
X
i

�5
i ; (2)

where �ab � ½�a;�b�=ð2iÞ and i labels the lattice site at
ri ¼ ðxi; yiÞ. We call this model the Gamma matrix model
(GMM). Suppose that the square lattice has N ¼ LxLy

sites, where Lx and Ly are the lattice’s linear sizes and

are assumed, for simplicity, to be even in this Letter.
Moreover, we consider periodic boundary conditions.
Obviously, the GMM can be written explicitly as a
spin-3=2 model. The GMM model respects translational
symmetry and time reversal symmetry (TRS). It does not
have global spin SU(2) or even U(1) rotational symmetry,
but is invariant under 180� rotations about the z axis in spin
space; i.e., it has global Ising symmetry. Note that, due to
the lack of SU(2) or U(1) symmetry in the present model,
the fermionic spinon excitations discussed here do not have
well-defined spin quantum number. A feature of the model
which makes it solvable is an infinite set of conserved
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‘‘fluxes:’’ ½Ŵi;H � ¼ 0 for any i and ½Ŵi; Ŵj� ¼ 0, where

Ŵi � �13
i �23

iþx̂�
14
iþŷ�

24
iþx̂þŷ is the plaquette operator on pla-

quette i.
Note that, in contrast to the spin-1=2 Kitaev model on

the honeycomb lattice, the GMM has an odd number
(namely, 3) of electrons per unit cell. The present model
in the limit Jx ¼ J0x, Jy ¼ J0y, and J5 ¼ 0 is similar to a

model proposed by Wen in Ref. [14], where, however, the
Gamma matrices were constructed from two spin-1=2
operators on each site, and therefore behave differently
under time reversal than in the present realization.
Moreover, the present model generically does not possess
the special symmetries that are responsible for some of the
behaviors of Wen’s.

Fermionic representation.—Spin-3=2 operators can be
expressed as bilinear forms involving three flavors of fer-

mion operators, Sz ¼ ayaþ 2byb� 3=2 and Sþ ¼ffiffiffi
3

p
fyaþ ffiffiffi

3
p

afþ 2ayb, subject to the constraint that the
physical states are only those with odd ‘‘fermion parity,’’

ð�1ÞN̂ ¼ �1, where N̂ ¼ fyfþ ayaþ byb. Rather than
using this representation in terms of three Dirac fermions,
we will directly represent the Gamma matrices in terms of
a related set of 6 Majorana fermions:

��
i ¼ ic�i di; ��5

i ¼ ic�i d
0
i; �¼1;2;3;4; �5

i ¼ idid
0
i;

(3)

where c�i , di, and d0i are Majorana fermions on site i. Six
Majorana fermions form an eight dimensional Hilbert
space, which is an enlarged one from the physical Hilbert
space of an spin-3=2. In terms of spin-3=2 operators in
Eq. (1), �1

i�
2
i�

3
i�

4
i�

5
i ¼ �1 for all i. Consequently, all

allowed physical states j�i in terms of Majorana fermions
must satisfy the following constraint, for all i,

Dij�i � ½�ic1i c
2
i c

3
i c

4
i did

0
i�j�i ¼ j�i: (4)

In terms of Majorana fermions, the Hamiltonian in the
enlarged Hilbert space can be written as

H ¼ X
i

½Jxûi;xididiþx̂ þ Jyûi;yididiþŷ þ J0xûi;xid0id0iþx̂

þ J0yûi;yid0id0iþŷ � J5idid
0
i�; (5)

where ûi;x � �ic1i c
2
iþx̂ and ûi;y � �ic3i c

4
iþŷ. It is obvious

that ûi;� are conserved quantities with eigenvalues ui;� ¼
�1, � ¼ x, y. Consequently, the enlarged Hilbert space
can be divided into sectors fug. In each sector, the
Hamiltonian Eq. (5) describes free Majorana fermions:

H ðfugÞ¼X
i

½Jxui;xididiþx̂þJyui;yididiþŷ

þJ0xui;xid0id0iþx̂þJ0yui;yid0id0iþŷ�J5idid
0
i�; (6)

where ui;� are emergent Z2 gauge fields. The Z2 gauge

transformations are given by di!�idi, d
0
i!�id

0
i, and

ui;� ! �iui;��iþ�, where �i ¼ �1. In the enlarged

Hilbert space, the eigenstates jc i¼ jc ic�jc id;d0 can be

written as a direct product of a part that involves the c� fer-

mions and a part that involves the d and d0 fermions, re-
spectively. Here jc ic is defined by ûi;�jc ic ¼ ui;�jc ic and
jc id;d0 are eigenstates of Eq. (6) with the corresponding

ui;�’s.
The spectrum of H ðfugÞ depends only on gauge invari-

ant quantities—the flux on local plaquettes, expði�iÞ �
ui;xuiþx̂;yui;yuiþŷ;x, and two global fluxes expði�xÞ �Q

iðyi¼1Þui;x and expði�yÞ �
Q

iðxi¼1Þui;y, where �i and

�x;y ¼ 0, �. [Note that the previously defined Wi ¼
� expði�iÞ and that �i are good quantum numbers.] It is
obvious that

P
i�i ¼ 0 (mod 2�), so there are N � 1

independent local fluxes. Including the two global fluxes,
the number of independent fluxes is N þ 1. Since there are
2N Z2 gauge fields, the number of different gauge field
choices corresponding to each flux sector f�g is 2N�1. In
other words, in the enlarged Hilbert space, each state is
2N�1-fold degenerate. Note that in the thermodynamic
limit, the energy is independent of the two global fluxes,
which gives rise to a fourfold topological degeneracy of the
physical ground states.
Projection operators.—Most of the states in the enlarged

Hilbert space are not physical states. To obtain a physical
eigenstate, we must find a linear combination of the degen-
erate eigenstates which is simultaneously an eigenstate of
every Di with eigenvalue 1. This is realized through the
projection operator P:

j�i ¼ Pjc i � Y
i

½ð1þDiÞ=2�jc i: (7)

Clearly, Eq. (7) implies Dij�i ¼ j�i for any i. Explicitly,
P is given by

P ¼
�
1þX

i

Di þ
X
i1<i2

Di1Di2 þ � � � þY
i

Di

��
2N: (8)

Di acting on a direct product state jc i is equivalent to a
gauge transformation on site i. A subtlety here is that there
are 2N operators in the sum in Eq. (8), but only 2N�1

inequivalent gauge transformations. In fact, D � Q
iDi

implements a gauge transformation on every site, thus
leaving all gauge fields unchanged. It follows that P ¼
P0ð1þDÞ, where P0 includes all inequivalent transforma-
tions. Since ½D;H � ¼ 0 and D2 ¼ 1, Djc i ¼ �jc i.
Moreover, D ¼ Q

i½ûi;xûi;y�
Q

i½idid0i�. By introducing the

following Dirac fermions,

fj � ijðdj þ id0jÞ=2; (9)

we obtain D ¼ ð�1ÞN̂�þN̂f , where N̂f ¼
P

if
y
i fi is the

number of Dirac fermions which is conserved modulo 2

by the Hamiltonian, and N̂� is defined by dividing the

plaquettes into two sublattices and counting the number
of �-fluxes through one or the other sublattice [15].
Thus, depending on the fermion and flux parity, P either

annihilates a given direct product state, jc i, or maps it to
the equal weight linear superposition of all gauge trans-
formations acting on jc i. For instance, when there is a
�-flux through each plaquette, which, as discussed below,

is the ground state sector, D ¼ ð�1ÞN̂f ; i.e., all physical
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states must have an even number of fermions. Conversely,
where 1 �-flux is added to each sublattice, only states with

N̂f ¼ odd survive projection. Conserving the parity of fer-

mion number reflects the fact that physical fermionic ex-
citations are created by nonlocal (string) operators [14,16].

�-flux state and gapped visons.—In each flux sector f�g,
the lowest energy of the Hamiltonian is denoted by
E0ðf�gÞ. The ground state energy of the model is achieved
by minimizing E0ðf�gÞ with respect to f�g. Formally, by
integrating out the fermions, an effective action for the Z2

gauge fields can be derived. However, in general, it is
nontrivial to obtain an explicit form of the effective action.

For J5 ¼ 0, fortunately, there is a theorem due to Lieb
[17] which implies that the energy minimizing flux sector
of a half-filled band of electrons hopping on a planar,
bipartite lattice is � per square plaquette. This uniform
�-flux sector, namely the ground state sector, is defined as
being vortex-free. Z2 vortex excitations, ‘‘visons’’, are
defined to be plaquettes with �i ¼ 0. Because of the con-
straint

P
i�i ¼ 0 (mod 2�), only an even number of visons

are allowed. It is special for this model that visons do not
have dynamics even though they interact with one another.
(Numerical calculations of the two vison energy reveals
that the interaction between visons is repulsive.) The mini-
mum energy cost of creating two visons in the ground state
is always finite and is defined as the vison gap energy �v	
ð

ffiffiffiffiffiffiffiffiffiffiffiffi
jJxJyj

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jJ0xJ0yj

q
Þ. Since the visons are gapped, the uni-

form �-flux is still the ground state sector as long as J5 is
much smaller than �v. In the rest of Letter, we restrict our
attention to cases (e.g., small J5) in which the ground states
lie in the �-flux sector.

Spin correlation.—The state with uniform �-fluxes pre-
serves the translational symmetry and TRS of the model.
To prove the ground state of the model is a spin liquid, we
need to show that there is no magnetic order and that the
spin correlations are short-ranged. Spin-3=2 operators can
be expressed as bilinear forms of Majorana fermions. For
instance, Szi ¼ ic3i c

4
i þ 1

2 ic
1
i c

2
i . The action of Szi on the

ground state j�i creates visons in the four surrounding
plaquettes around site i [18]. The effect of Sxi and S

y
i on the

ground state is similar. Because visons are nondynamical

in the present model, h�jS�i S�j j�i is identically zero un-

less sites i and j are nearest neighbors; i.e., the spin
correlations are unphysically short-ranged. Presumably, if
additional small, local terms are added to the Hamiltonian,
perturbative corrections to this correlator would lead to a
finite correlation length.

Gapless fermions.—To obtain the excitation spectrum in
the�-flux (ground state) sector, we fix the gauge by choos-
ing ui;x ¼ 1; ui;y ¼ ð�1Þi. The corresponding Hamiltonian

is given by

H0 ¼
X
i

½txfyi fiþx̂ þ tyð�1Þifyi fiþŷ � J5f
y
i fi

��xð�1Þifyi fyiþx̂ � �yf
y
i f

y
iþŷ þ H:c:�; (10)

which describes a p-wave superconductor of spinless fer-
mions [19]. Here t� � J� þ J0� and �� � J� � J0�. (Note
that in Ref. [14], the pairing terms are absent due to
‘‘projective symmetries.’’) In terms of the Bloch states,

fk ¼ P
i expð�ik � riÞfi=

ffiffiffiffi
N

p
, Eq. (10) in momentum

space is given by

H0¼
X
k

�y
kHk�k; �y

k¼ðfyk;fykþQ;f�k;f�k�QÞ; (11)

where Q ¼ ð�;�Þ and the summation is over only half of
the Brillouin zone since k is equivalent to kþQ. In
general, the analytical form of the eigenvalues of the 4�
4 matrix Hk are complicated. Because of time reversal
symmetry, however, it is straightforward to derive the
quasiparticle spinon excitation spectrum as follows:

E�;k ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J25 þ 2gþ;k � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2�;k þ J25gk

qr
; (12)

where g�;k ¼ ðJ2x � J02x Þcos2kx þ ðJ2y � J02y Þsin2ky and

gk ¼ ðJx þ J0xÞ2cos2kx þ ðJy þ J0yÞ2sin2ky.
When J5 ¼ 0, Eþ;k ¼ 4ðJ2xcos2kx þ J2ysin

2kyÞ1=2 and

E�;k ¼ 4ðJ02x cos2kx þ J02y sin2kyÞ1=2. Both spectra are gap-

less at nodes�K ¼ �ð�=2; 0Þ, around which the spectrum
is linear in momentum; the spinon excitations are massless
Dirac fermions. However, the massless spinons are un-
stable in the sense that additional small, local (further
neighbor hopping and pairing) terms can gap them [16].
When 0< J5 
 �v, (so the ground state lies in the

�-flux sector) it is clear that Eþ;k is always gapped. The

conditions for E�;k to have gapless excitations are

JxJ
0
xcos

2kx þ JyJ
0
ysin

2ky ¼ J25=4; (13)

ðJxJ0y � JyJ
0
xÞ coskx sinky ¼ 0: (14)

For simplicity, we consider the case in which Jx; Jy �
J5 > 0 so that J5 
 �v is satisfied for arbitrary J0x and
J0y. From these two conditions, we analyze the number of

nodes in the spinon excitation spectrum and obtain the
phase diagram accordingly, shown in Fig. 1, as a function
of J0x and J0y: (i) When J0x > J25=ð4JxÞ, J0y > J25=ð4JyÞ, and
J0x=J0y � Jx=Jy, the fermion spectrum has eight Dirac

nodes at ð��=2� 	x; 0Þ and ð��=2;�	yÞ with 	� ¼
arcsinðJ5=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4J�J

0
�

p Þ; (ii) when J0x > J25=ð4JxÞ and J0y <
J25=ð4JxÞ, there are four Dirac nodes at ð��=2� 	x; 0Þ;
(iii) when J0x < J25=ð4JxÞ and J0y > J25=ð4JxÞ, there are also
four Dirac nodes but at ð��=2;�	yÞ; (iv) when J0x <
J25=ð4JxÞ and J0y < J25=ð4JyÞ, all spinon excitations are

gapped.
For 0< J5 
 �v, the gapless spinon excitations, if they

exist, are topologically stable in the sense of Wigner–Von
Neumann theorem. Any weak translational and time re-
versal invariant perturbation only shifts the positions of the
nodes [16]. Consequently, the present phase with Dirac
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nodes is characteristic of a stable quantum phase of matter,
i.e., an algebraic spin liquid [20–22].

It is worth noting that along the critical line J0x=J0y ¼
Jx=Jy and J0x > J25=ð4JxÞ, corresponding to the red line in

Fig. 1, the discrete nodes broaden into a line of nodes. In
short, in this special case the present model realizes a
Fermi surface. Since spin-3=2 operators can be written as

bilinear in term of Schwinger bosons, S� ¼ bys 
�
ss0bs0=2,

s ¼" , # with the constraint by" b" þ by# b# ¼ 3, the present

model can be written as a bosonic model, albeit one with
four-body interactions. It follows as a corollary that by
tuning some coupling constants to critical values, a purely
bosonic model can exhibit an emergent Fermi surface.

Upon approach to the critical line J0x ¼ J25=ð4JxÞ from
the eight node phase, both of the two Dirac cones at
�ð�=2þ 	x; 0Þ approach (�; 0) leading, at criticality, to
a single node with the unusual dispersion Ek �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aq4x þ Bq2y

q
Þ for small jq ¼ k� ð�; 0Þj, where A and B

are constants depending on J0�, J�, and J5. Another two
nodes at �ð�=2� 	x; 0Þ approach (0, 0) leading to the
same unusual dispersion. Similar physics is obtained at the
other critical line J0y ¼ J25=ð4JyÞ.

Large-J5 limit.—The ground states at the limit J� ¼
J0� ¼ 0 form the low energy manifold Szi ¼ �3=2 for
each i. Defining an effective spin-1/2 ~
, such that Szi ¼�3=2 corresponds to 
z

i ¼ �1, and employing degenerate
perturbation theory in J� and J

0
�, the effective Hamiltonian

can be shown be Heff ¼ Jeff
P

i

x
i 


y
iþx̂


x
iþx̂þŷ


y
iþŷ, Jeff ¼

ðJx � J0xÞ2ðJy � J0yÞ2=ð16J35Þ, which is exactly Wen’s pla-

quette model [7] and is equivalent to the toric code model
[23]. The visons have the same nontrivial statistics as in the
toric code model and thus may be relevant in the context of
topological quantum computation [24]. In terms of fluxes,
Heff ¼

P
iJeff exp½i�i�. Consequently, the ground state is

still in the �-flux sector. We expect that the gapped phase
in small J5 limit can be adiabatically connected to the large
J5 gapped phase.
Discussion.—It is straightforward to generalize the

GMM to other lattices in 2D and also to higher dimensions.
For the 2D triangular lattice, a quantum spin-7=2 (or
spin- 12 -

1
2 -

1
2 [14]) model can be defined via the seven

Gamma matrices. Because of the non-bi-partiteness of
the lattice, the model spontaneously breaks TRS. Thus, it
is expected that a chiral spin liquid [25] could be realized in
this model on a triangular lattice [16].
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FIG. 1 (color online). The quantum phase diagram of the
Gamma matrix model as a function of J0x and J0y in the case J5 

Jx, Jy, where the ground state lies in the uniform �-flux sector.

The Dirac nodes in the phase diagram are topologically stable.
At the critical (red) line J0x=J0y ¼ Jx=Jy, fermionic spinons form

a Fermi surface (FS). The other two critical (blue) lines are
defined as J0x ¼ J25=ð4JxÞ or J0y ¼ J25=ð4JyÞ.
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