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Majorana fermions are zero-energy quasiparticles that may exist in superconducting vortices and
interfaces, but their detection is problematic since they have no charge. This is an obstacle to the
realization of topological quantum computation, which relies on Majorana fermions to store qubits in a
way which is insensitive to decoherence. We show how a pair of neutral Majorana fermions can be
converted reversibly into a charged Dirac fermion. These two types of fermions are predicted to exist on
the metallic surface of a topological insulator (such as Bi,Se;). Our Dirac-Majorana fermion converter
enables electrical detection of a qubit by an interferometric measurement.
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There is growing experimental evidence [1-3] that the
5/2 fractional quantum Hall effect (FQHE) is described by
the Moore-Read state [4]. This state has received much
interest in the context of quantum computation [5], because
its quasiparticle excitations are Majorana bound states. A
qubit can be stored nonlocally in a pair of widely separated
Majorana bound states, so that no local source of decoher-
ence can affect it [6]. The state of the qubit can be readout
and changed in a fault-tolerant way by edge state interfer-
ometry [7-9]. This “measurement based topological quan-
tum computation” [10] combines static quasiparticles
within the Hall bar to store the qubits, with mobile quasi-
particles at the edge of the Hall bar to perform logical
operations by means of interferometric measurements.

The electronic correlations in the Moore-Read state
involve a pairing of spin-polarized fermions, equivalent
to a superconducting pairing with p, + ip, orbital sym-
metry [11-13]. Such an exotic pairing might occur natu-
rally in the Sr,RuQ, superconductor [14], or it might be
produced artificially in p-wave superfluids formed by fer-
mionic cold atoms [15]. Recently, Fu and Kane [16]
showed how a conventional s-wave superconductor might
produce Majorana bound states, if brought in proximity to
a topological insulator. This class of insulators has metallic
surface states with massless quasiparticles, as has been
demonstrated in Bi,Sb;_, alloys [17] and Bi,Se; single
crystals [18,19]. The latter material is particularly promis-
ing for applications because it remains a topological insu-
lator at room temperature. The 5/2 FQHE, in contrast,
persists only at temperatures well below 1 K [1-3].

While induced superconductivity in a topological insu-
lator seems an attractive alternative to the FQHE for the
purpose of quantum computation, one crucial difference
creates a major obstacle: Quasiparticle excitations in the
Moore-Read state have charge *¢/4 (generated by chang-
ing the filling fraction of the half filled Landau level), but in
a superconductor the excitations have charge zero (the
charge is screened by the superconducting condensate).
All known schemes [7-9] for edge state interferometry
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rely on electrical detection, and this seems impossible if
the edge states carry no electrical current. It is the purpose
of this work to propose a way around this obstacle, by
showing how a pair of neutral Majorana fermions can be
converted phase coherently and with unit probability into a
charged Dirac fermion.

We first give a qualitative description of the mechanism
of electrically detected Majorana interferometry, and then
present a quantitative theory. Our key idea is to combine
edge channels of opposite chiralities in a single interfer-
ometer, by means of a magnetic domain wall. The appear-
ance of counterpropagating edge channels in a single
superconducting domain is a special feature of a topologi-
cal insulator in proximity to a ferromagnet, where the
propagation direction is determined by the way time rever-
sal symmetry is broken outside of the condensate (hence by
the polarization of the ferromagnets)—rather than being
determined by the order parameter of the condensate (as in
a p, * ip, superconductor or FQHE droplet).

Referring to the lower panel of Fig. 1, we see that
electrons or holes (with Dirac fermion operators ¢l and
¢,) propagate along the domain wall a until they reach the
superconductor, where they are split into a pair of
Majorana fermions 7y, and vy, of opposite chirality:

Ca 7 Yp — 17c (1)

(Here we have used that y = %, which is the defining
property of a Majorana fermion.)

The Dirac-to-Majorana fermion conversion expressed
by Eq. (1) relies on the fact that the electron or hole
mode at the domain wall couples to a pair of Majorana
modes, so that the full information encoded by the complex
fermion c, is encoded by two real fermions vy, and 7y... This
is the essential distinction from the process of electron
tunneling into a Majorana bound state [20-23], which
couples to a single Majorana fermion and can therefore
not transfer the full information.

Upon leaving the superconductor the Majorana fermions
recombine into an electron cjg or hole c¢; depending on the

cd =y +ive
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FIG. 1 (color online). Three-dimensional topological insulator
in proximity to ferromagnets with opposite polarization (M and
M) and to a superconductor (S). The top panel shows a single
chiral Majorana mode along the edge between superconductor
and ferromagnet. This mode is charge neutral, so it cannot be
detected electrically. The Mach-Zehnder interferometer in the
bottom panel converts a charged current along the domain wall
into a neutral current along the superconductor (and vice versa).
This allows for electrical detection of the parity of the number of
enclosed vortices, as explained in the text.

number n, of superconducting vortices enclosed by the
two arms of the interferometer,

yo + (=Dmiy.—ch, oy = (CD™iy, > cp ()

For n, an even integer, no charge is transferred to the
superconductor, while for n,, odd a charge *2e is absorbed
by the superconducting condensate. The conductance G,
measured by application of a voltage between a point on
the domain wall and the superconductor, becomes equal (in
the zero-temperature, zero-voltage limit) to G =0 for
n, = even and G = 2¢*/h for n,, = odd.

Proceeding now to a theoretical description, we recall
that the surface of a three-dimensional topological insula-
tor, in the presence of a magnetization M(r) and super-
conducting order parameter A(r), is described by the
following Hamiltonian [16]:

Here p = (p,, p,, 0) is the momentum on the surface, o =
(o, o,, 0,) is the vector of Pauli matrices, v is the Fermi
velocity, and E the Fermi energy. The two magnetizations
M; and M| in Fig. 1 correspond to M = (0,0, M,) and
M = (0,0, —M,), respectively. Particle-hole symmetry is

expressed by the anticommutation HE = —EH of the
Hamiltonian with the operator
0 io,C
= = y
= (_iayc ; ) 4)

with C the operator of complex conjugation.

There is a single chiral Majorana mode with amplitude
¢ (group velocity v,,) at a boundary between a region with
a superconducting gap and a region with a magnetic gap
[16]. At a domain wall between two regions with opposite
signs of M, there are two chiral Dirac fermion modes, an
electron mode with amplitude ¢¢ and a hole mode with
amplitude ¢". The scattering matrix S;,(¢) describes scat-
tering at excitation energy & from electron and hole modes
(along edge a) to two Majorana modes (along edges b and
c in Fig. 1), according to

() = e(5) ®

Particle-hole symmetry for the scattering matrix is ex-
pressed by

su(e) = Su-2)( o) ©)

At small excitation energies |e| < |M.|, |A| the & depen-
dence of §;, may be neglected. (The excitation energy is
limited by the largest of voltage V and temperature T.)
Then Eq. (6) together with unitarity (S;;' = ST) fully
determine the scattering matrix,

I 2 TR U V2
Sin_ﬁ(ti :i)(o e*"")’ @

up to a phase difference a between electron and hole
(which will drop out of the conductance and need not be
further specified). The sign ambiguity (matrix elements
+i, —ior —i, +i) likewise does not affect the conductance.

The scattering matrix S, for the conversion from
Majorana modes to electron and hole modes can be ob-
tained from S, by time reversal,

S B | 1 =i
Sout(M)_Sg;l( M)_\/_§< 0 e_m/>(1 Il) (8)

The phase shift ' may be different from «, because of the
sign change of M upon time reversal, but it will also drop
out of the conductance.
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The full scattering matrix S of the Mach-Zehnder inter-
ferometer in Fig. 1 is given by the matrix product

_(See Sen)_ e 0
S_<She Shh) SOU{( 0 eiﬁ‘)Sm’ ®

where B, and . are the phase shifts accumulated by the
Majorana modes along edge b and c, respectively. The
relative phase

B, — B. = edL/hv,, + 7+ n, 7 (10)

consists of three terms: a dynamical phase (proportional to
the length difference 6L = L, — L, of the two arms of the
interferometer), a Berry phase of 7 from the rotation of the
spin 1/2, and an additional phase shift of 7 per enclosed
vortex.

The differential conductance follows from

n,m eVOL
v+ . (11
2 2hvm) an

2¢2 2¢2
G(V) = % 1S, (eV)I2 = %SmZ(

As announced in the introduction, the linear response
conductance G(0) vanishes if the number of vortices is
even, while it has the maximal value of 2¢2/h if the
number is odd. A finite temperature 7" will obscure the
even-odd effect if kzT = hv,,/SL. By reducing SL, the
thermal smearing can be eliminated—Ileaving the require-
ment kzT < |M_|, |A| as the limiting factor.

The Mach-Zehnder interferometer can distinguish be-
tween an even and an odd number n,, of enclosed vortices.
The next step towards measurement based topological
quantum computation is to distinguish between an even
and an odd number ny of enclosed fermions. If n, is odd,
the parity of ny is undefined, but if n, is even, the parity of
ny is a topologically protected quantity that determines the
state of a qubit [5]. To electrically readout the state of a
qubit encoded in a pair of charge-neutral vortices, we
combine the Fabry-Pérot interferometer of the FQHE
[8,9] with our Dirac-Majorana fermion converter.

The geometry is shown in Fig. 2. Electrons are injected
in the upper-left arm a of the interferometer (biased at a
voltage V) and the current / is measured in the upper-right
arm e (which is grounded). The electron at a is split into a
pair of Majorana fermions ¢, and ¢, according to the
scattering matrix S;,. A pair of constrictions allows tunnel-
ing from . to ¢, with amplitude ¢,.. Finally, the
Majorana fermions ; and ¢, are recombined into an
electron or hole at e, according to the scattering matrix
Sou- The resulting net current I = (e2/h)V(|T ,.|> —
|'T 1,.|%) (electron current minus hole current) is obtained
from the transfer matrix

ei:Bb O eZ .
= . = — lB)
T Sout( 0 1, )Sm =1 7 VRe(e Pri,,.).

12)

Notice that the current is proportional to the tunnel ampli-
tude, rather than to the tunnel probability. In the low-

© O M, o—|||

FIG. 2. Fabry-Pérot interferometer, allowing to measure the
state of a qubit encoded in a pair of vortices. Black lines
represent electron or hole modes at domain walls, gray lines
represent Majorana modes at magnet-superconductor interface.

voltage limit, to which we will restrict ourselves in what
follows, the phase shift 3, vanishes and ¢, is real (because
of electron-hole symmetry)—so [ directly measures the
tunnel amplitude.

In general, two types of tunnel processes across a con-
striction contribute to ¢,.: A Majorana fermion at the edge
of the superconductor can tunnel through the supercon-
ducting gap to the opposite edge of the constriction either
directly as a fermion or indirectly via vortex tunneling [24].
Fermion tunneling typically dominates over vortex tunnel-
ing, although quantum phase slips (and the associated
vortex tunneling) might become appreciable in constric-
tions with a small capacitance [25] or in superconductors
with a short coherence length [26]. Only vortex tunneling
is sensitive to the fermion parity n;, through the phase
factor (—1)" acquired by a vortex that encircles n, fermi-
ons. Because of this sensitivity, vortex tunneling is poten-
tially distinguishable on the background of more frequent
fermion tunneling events.

The contribution to 7,. from fermion tunneling is simply
tr1 + (=1)"ts,, to lowest order in the fermion tunnel
amplitudes 74, and ?, at the first and second constriction.
There is no dependence on n £» SO We need not consider it
further.

To calculate the contribution to 4. from vortex tunnel-
ing, we apply the vortex tunnel Hamiltonian [24] H; =
v;o;0%, where i = 1, 2 labels the two constrictions and v;
is the tunnel coupling. The operators o; and o create a
vortex at the left and right end of constriction i, respec-
tively. The lowest order contribution to f,4. is of second
order in the tunnel Hamiltonian, because two vortices need
to tunnel in order to transfer a single Majorana fermion.
The calculation of 7, will be presented elsewhere, but the
n, and ny dependence can be obtained without any calcu-
lation, as follows.
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Three terms can contribute to second order in H;, de-
pending on whether both vortices tunnel at constriction
number 1 (amplitude t%), both at constriction number 2
(amplitude t%), or one at constriction number 1 and the
other at constriction number 2 (amplitude 2¢,7,). The
resulting expression for 7,4, is

tge =03+ 65+ (=1)211,, if n,is even.

13)

We see that if the two constrictions are (nearly) identical,
so t; = t, = t, the tunnel amplitude 7;. and hence the
current I, due to vortex tunneling vanish if the fermion
parity is odd, while I ey = [(€?/h)V]41> if the fermion
parity is even [27].

In summary, we have proposed a method to convert a
charged Dirac fermion into a pair of neutral Majorana
fermions, encoding the charge degree of freedom in the
relative phase of the two Majorana fermions. The conver-
sion can be realized on the surface of a topological insu-
lator at a junction between a magnetic domain wall
(supporting a chiral charged mode) and two magnet-
superconductor interfaces (each supporting a Majorana
mode). We found that at low voltages the Dirac-
Majorana fermion conversion is geometry independent
and fully determined by the electron-hole symmetry. It
allows for the electrical readout of a qubit encoded non-
locally in a pair of vortices, providing a building block for
measurement based topological quantum computation.

Much experimental progress is needed to be able to
perform Majorana interferometry in any system, and the
topological insulators considered here are no exception.
Induced superconductivity with critical temperature 7, >
4 K has been demonstrated in BiSb [28]. It is likely that the
same could be achieved in Bi,Se; (the most promising
realization of a three-dimensional topological insulator
[18,19]). The even-odd vortex number effect of Eq. (11)
would then be measurable at temperatures 7 well below
T.—if the arms of the interferometer can be balanced to
eliminate thermal smearing (8L < hwv,,/kgT). This would
be the first experimental milestone, reachable with current
technology. The even-odd fermion number effect of
Eq. (13) requires coherent vortex tunneling, which is a
more long-term experimental challenge [25,26].

We acknowledge discussions with B. Béri, B.J.
Overbosch, and in particular with C. L. Kane. Our research
was supported by the Dutch Science Foundation NWO/
FOM.

Note added.—We have learned of independent results on
a similar problem by Fu and Kane [29].
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