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We discuss the strong spin segregation in a dilute trapped Fermi gas recently observed by Du et al. with

an ‘‘anomalous’’ large time scale and amplitude. In a collisionless regime, the atoms oscillate rapidly in

the trap and average the inhomogeneous external field in an energy dependent way, which controls their

transverse spin precession frequency. During interactions between atoms with different spin directions, the

identical spin rotation effect transfers atoms to the up or down spin state, depending on their motional

energy. Since low energy atoms are closer to the center of the trap than high energy atoms, the final

outcome is a strong correlation between spins and positions.
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Spin waves in dilute gases were predicted at the begin-
ning of the 1980s [1,2] and confirmed experimentally soon
after [3–5]. They can be understood in two equivalent
ways, either as a consequence of spin mean field [1], or
in more microscopic terms as the cumulative result of the
identical spin rotation effect (ISRE)—an effect taking
place during binary collisions between identical atoms
[2]. Similarly, the Faraday effect is a rotation of the spin
of photons that can be seen, either as a consequence of a
macroscopic index of refraction or as resulting from the
accumulation of microscopic forward scattering events
between photons and atoms.

Experiments with ultracold atomic gases have renewed
the interest in spin waves. In 2002, a group at JILA [6]
showed that, in a trapped ultracold atomic gas of bosons,
the ISRE can result in a spontaneous spatial ‘‘segregation’’
of two atomic internal states j1i and j2i (equivalent to a
pseudospin 1=2). Several groups then proposed a theoreti-
cal explanation of these observations, using either one-
dimensional spin 1=2 hydrodynamic [7] or kinetic [8,9]
equations. More recently, Du et al. from Duke University
[10] did an experiment that explores the properties of spin
waves in quantum gases of fermions (6Li) in the collision-
less Knudsen regime, while most previous experiments
were performed in the hydrodynamic regime (see never-
theless [11]). The spin segregation they observe is a hun-
dred times larger and a hundred times slower than would be
predicted by hydrodynamic theory. They call this spec-
tacular effect ‘‘anomalous spin segregation’’ and suggest
that its explanation may require ‘‘a modification of spin
wave theory or possibly a new mechanism’’ for fermions.

The purpose of this Letter is twofold. First we argue that
no modification of spin wave theory is necessary to under-
stand the experiment; the physical mechanism behind the
observations is the usual ISRE. The difference between
bosons and fermions is not essential; what is important is
the collisionless regime. Second, we discuss why this
collisionless regime, combined with the presence of a

trap, gives access to unexpected and interesting new phys-
ics. In fact, one can observe the ISRE almost as in an ideal
experiment, where a single spin polarized atom is sent
through a target of a gas polarized in another direction,
and where the spin direction of the outgoing atom is
measured. Moreover, when the trap potential sends back
the atom through the same target, the rotations of the spins
are additive (the symmetry of ISRE is the same as that of
the Faraday effect). As a result, one reaches situations
where the spins of the atoms are correlated to their mo-
tional energies in the trap, instead of their positions; these
situations are inaccessible in the hydrodynamic regime,
where the value of the spin current is determined locally
by a thermal average over many collisions.
We begin with a comparison between the JILA and Duke

experiments. In the latter, the peak density nð0Þ and the
typical scattering length a12 are, respectively, 15 and 20
times smaller than in the JILA experiment, making the
diluteness factor 1=nð0Þa312 of the gas 105 times larger. The
differences can be expressed in terms of 5 relevant time
scales: (1) the radial trap period 2�=!rad; (2) the axial trap
period 2�=!; (3) the average time between (lateral) colli-

sions �� ½4�a212nð0ÞvT��1, where vT � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
is the

thermal velocity, T the temperature, and m the atomic
mass; (4) the typical spin precession period in the external
magnetic field 2�=j�0j; and (5) the typical precession
period in the spin mean field �fwd �m=@ja12jnð0Þ. These
time scales (in ascending order for the Duke experiment)
are compared in the table:

Time scales (in ms) 2�=!rad 2�=! 2�=j�0j �fwd �

Duke exp. [10] 0.2 6.9 100 300 5000

JILA exp. [6] 4 143 170 14 10

where a12 ��5a0 and�0=2� � �10 Hz are typical val-
ues for the Duke experiment [12]. The ISRE is then strong:
�=�fwd � @=ðmvTja12jÞ � 1. In the JILA experiment, a
hydrodynamic description was qualitatively correct be-
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cause of the relatively small value of !� � 1. In the Duke
experiment !�� 4500: the gas is so dilute that its dynam-
ics is well described in the collisionless limit (lateral
collisions are ignored). On average, an atom oscillates
700 times in the axial trap between two collisions.

We base our analysis on the formalism used in [2,8],
which gives a general frame for the study of nondegenerate
quantum gases. It distinguishes two effects of the interac-
tions: mean-field effects (forward scattering in collisions)
and ‘‘real’’ collisions (lateral scattering), both with a full
treatment of the effects of spin polarization and statistics.
This leads to a kinetic equation with arbitrary position and
momentum dependence. In the hydrodynamic limit, the
system remains close to local equilibrium, momenta can be
integrated out, and the spin current is simply proportional
to the local gradient of magnetization. But we do not make
such an assumption and keep a full dependence on the
variables.

Consider a cigar-shaped harmonic trap with axial (x
direction) frequency !=2� and radial (y and z directions)
frequencies !rad=2�. As ! � !rad, an effective one-
dimensional description of the dynamics is possible. The
peak density (per unit volume) nð0Þ is related to the total

number of atoms by N ¼ nð0Þð2�Þ3=2xTr2?, where xT �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m!2

p
(respectively, r? �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m!2

rad

q
) is the char-

acteristic atomic cloud size in the axial (respectively, ra-
dial) direction. The two internal states j1i and j2i are
treated as an effective spin 1=2. The three relevant scatter-
ing lengths are a12, a11, and a22; the corresponding cou-
pling constants are gij � 4�@2aij=m. In spin space, ek is

the longitudinal unit vector, while e?1, e?2 correspond to
the transverse directions. The spin couples to an external
effective magnetic field �ðxÞek, with an inhomogeneity

along x characterized by a curvature�00ð0Þ. Therefore, the
magnetic field is taken to be �ðxÞ � �0x

2=x2T , where
�0 � �00ð0Þx2T=2 is a characteristic spin precession fre-
quency [13].

The kinetic equation for a spin 1=2 nondegenerate
atomic gas (fermions or bosons) is written in terms of a 2	
2 operator �̂ obtained by a Wigner transform of the density
operator:

�̂ðx; p; tÞ ¼ 1
2½fðx; p; tÞÎ þMðx; p; tÞ 
 �̂�: (1)

Equivalently, we can reason in terms of the phase space
density f and spin density M. In the Duke experiment, the
gas is nondegenerate (T � 27 �K � TF � 7 �K). As in
[8] we make some approximations: both the density mean
field jg12jnð0Þ=4 � h	 2 Hz and the Stern and Gerlach
segregation energies @j�0j � h	 10 Hz are negligible
when compared to the harmonic confining potential
m!2x2T=2 ¼ kBT=2 � h	 280 kHz. Since lateral colli-
sions are a small perturbation, we treat them in the simplest
relaxation time approximation. Here a single coupling
constant g12 � 0 appears, instead of three, because g11 ¼

g22 ¼ 0 results from the Pauli exclusion principle (colli-
sions only occur between atoms in different spin states).
We then obtain the equations [8]

dtf � ð@t þ p@x � x@pÞf ’ � f� feq

�
; (2)

dtM� ½�ðxÞek þ �gm� 	M ’ �M�Meq

�
; (3)

where � ¼ �1 for fermions (and þ1 for bosons), the
superscript eq denotes local equilibrium phase space den-
sities, and the dimensionless coupling constant g is defined
as g � g12nð0Þ=2@!. Dimensionless units have been used:
lengths are measured in units of xT , momenta in units of
pT � mvT , angular frequencies in units of !, times in
units of 1=!, and phase space densities f and M in units

of nð0Þ=pT

ffiffiffiffiffiffiffi
2�

p
. The density n and the spin density m

[both in units of nð0Þ] are defined as

nðx; tÞ ¼
Z dpffiffiffiffiffiffiffi

2�
p f and mðx; tÞ ¼

Z dpffiffiffiffiffiffiffi
2�

p M (4)

such that 1 ¼ R
dxn=

ffiffiffiffiffiffiffi
2�

p
(and, e.g., e?1 ¼

R
dxm=

ffiffiffiffiffiffiffi
2�

p
if the gas is fully polarized in the e?1 direction). The total
density n ¼ n1 þ n2 and the longitudinal spin density
mk ¼ n2 � n1 are related to the internal state populations,

while the transverse spin density m? is related to their
coherences.
These equations are now solved numerically. Since

the experiment starts with a �=2 pulse which suddenly
transfers the spins to the transverse plane, the initial
distributions are f0ðx; pÞ ¼ exp½�ðx2 þ p2Þ=2� and
M0ðx; pÞ ¼ f0ðx; pÞe?1. As f0 solves the kinetic equation,
the total density does not evolve nðxÞ ¼ expð�x2=2Þ, and
the dynamics after the pulse can be expressed in terms of
M only. The 3 dimensionless parameters appearing in the
kinetic equations are taken as �g ¼ 0:021 (corresponding
to a12 ¼ �4:6a0 and � ¼ �1), �0 ¼ �0:07, and 1=� ¼
2	 10�4. Figure 1 compares the results with those plotted
in Fig. 2(c) of [10]: both the maximum segregation time
(tmax � 300 ms) and amplitude [mkð0; tmaxÞ=nð0Þ � 30%]

are in good agreement with the experimental data. Note
also that the sign of the segregation is predicted correctly. It
is clear that standard theory with a transport equation
treated in the collisionless regime explains the observa-
tions without introducing any new mechanism. The system
eventually relaxes to equilibrium on the time scale of a few
�, which can be very slow indeed because �� 5 s.
Calculations for other values of a12 are in fair agreement
with the experimental data. In particular, changing the sign
of a12, of �0, or of � simply reverses the role of the two
internal states. When a12 � 0, no significant segregation
takes place. Figure 2 shows the longitudinal spin density
profile at saturation and a good agreement with the experi-
ment results [10].
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In order to better understand the numerical results of the
preceding paragraph, approximate analytical solutions of
the linearized [jgj � 1] collisionless kinetic equations are
now provided. In the absence of lateral collisions, the
(axial) motional energy of an atom E ¼ ðx2 þ p2Þ=2 (in
units of kBT) is a constant of the motion, and Mðx; p; tÞ
conserves its norm. We therefore write Mk ¼ f0 sin�,
M? ¼ M?1 þ iM?2 ¼ f0 cos�e

i�, which define the trans-
verse �ðx; p; tÞ and longitudinal �ðx; p; tÞ precession an-
gles in phase space. Accordingly the initial conditions are
�ðx; p; 0Þ ¼ 0 and �ðx; p; 0Þ ¼ 0. Equation (3) translates

into coupled equations of motion for � and �:

dt� ¼ �þ �g

�
hsin�i � sin�

cos�
Refei�hcos�e�i�ig

�
; (5)

dt� ¼ �gImfei�hcos�e�i�ig; (6)

where the momentum average is defined as hAi �R dpffiffiffiffiffi
2�

p f0A for any function Aðx; p; tÞ. To first order in g,

we can ignore the second term in Eq. (5) and assume
cos� ’ 1 in Eq. (6) (furthermore, Mk ’ f0� and M? ’
f0e

i�). These linearized equations can be solved exactly
[14]. Here we just quote the results for the transverse spin
precession angle �ðx; p; tÞ:

� ¼ �0½12	þðtÞx2 þ 1
2	�ðtÞp2 � 	0ðtÞxp�; (7)

where 	�ðtÞ � t� sin2t
2 , 	0ðtÞ � sin2t. The longitudinal

spin density mkðx; tÞ is

mk ¼ �g
Z t

0
dt0

e�ðZ=�XÞx2ffiffiffiffi
X

p
�1=4

sin

�
1

2
arctan

Y

X
� Z

�X

Y

X
x2
�
;

(8)

where Zðt0Þ � 1þ�2
0½	2

0ðt0Þ þ 	2�ðt0Þ�, Yðt; t0Þ �
2s�0½	0ðt0Þc� 	�ðt0Þs�, Xðt; t0Þ � 1þ s2 þ
�2

0½	0ðt0Þsþ 	�ðt0Þc�2, �ðt; t0Þ � 1þ ðYXÞ2, using the

shorthand notation s � sinðt� t0Þ and c � cosðt� t0Þ.
Three regimes can be distinguished: (i) For times

smaller than the trap period (t � 1), at a fixed position x,
the transverse phase difference between two atoms with
momentum p and p0 is dominated by the x� p correlation
term 	0ðtÞ in Eq. (7): �ðx; p; tÞ ��ðx; p0; tÞ ’ �0t

2xðp�
p0Þ � 1. This is the regime leading to correlation between
velocity and transverse spin and giving

mkðx; tÞ � �gnðxÞ2ð1� 2x2Þ2�0

t4

4!
(9)

as already found in [8,9]. For the Duke experiment, this
behavior is not dominant since it occurs only at very short
times (smaller than �1 ms). However, for times much
longer than the trap period t � 1 there is a transition to
an energy dominated regime where �ðx; p; tÞ ’ �ðE; tÞ ’
�0Et, where �0E emerges as an effective transverse pre-
cession frequency. (ii) A second regime occurs for 1 �
t � 1=j�0j where the phase difference �ðE; tÞ �
�ðE0; tÞ ’ �0tðE� E0Þ � 1 is small—this is the regime
of correlation between motional energy and transverse
spin. Averaging over fast axial oscillations of small ampli-
tude, we obtain the approximate result

mkðx; tÞ � ��gnðxÞ4=3
�
1� 4

3
x2
� ffiffiffi

2
p

3
ffiffiffi
3

p �0t
2: (10)

This gives the dominant contribution to the spin segrega-
tion in the Duke experiment. Note that there is a sign
inversion as compared to regime (i) and that the scaling
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FIG. 2 (color online). Numerical results (solid line) for the
longitudinal spin density at maximum segregation time
mkðx; tmaxÞ [in units of nð0Þ] as a function of position; the

parameters are the same as in Fig. 1 and xT ¼ 210 �m. These
results are in very good agreement with the measurements of
[10] (crosses) at the trap center and edges, without any adjust-
able parameter. The discrepancy close to x=xT � �1 may be
attributed to a small population imbalance in the experiment
(� 4% as estimated from the area under the experimental
profile). The results of two approximations are also shown
(dotted and dashed lines); see text for more details.
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FIG. 1 (color online). Spin density at the center of the trap as a
function of time mðx ¼ 0; tÞ [in units of nð0Þ] for �g ¼ 0:021,
�0 ¼ �0:07, and 1=� ¼ 2	 10�4. We obtain a good agreement
with the measurements of mk ¼ n2 � n1, taken from Fig. 2(c) of

[10] and shown here with their error bars: both the amplitude and
the time constants of the spin segregation are well reproduced.
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is now t2 instead of t4 [15]. The typical time for triggering

the spin segregation is ttrig � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffijg�0j

p
. The dotted line of

Fig. 2 shows a plot of (10) for t� 1=j�0j. (iii) The third
regime is an ergodic regime: when t � 1=j�0j, the phase
difference between high and low energy atoms becomes
large �ðE; tÞ ��ðE0; tÞ ’ �0tðE� E0Þ � 1; therefore,
saturation occurs. However, the saturation is not captured
by the linearized equations as it is actually related to norm
conservation and to the nonlinearity of the kinetic equa-
tions [14]. By comparing the numerics to the analytical
solution of the linearized equations, we find that they agree
for the first �100 ms.

A simple model captures the essence of the phenome-
non. Assume that we can divide the atoms into two classes:
the ‘‘hot atoms’’ with some motional energy (for instance
3kBT) and the ‘‘cold atoms’’ with some lower energy (for
instance kBT=2). All the atoms oscillate quickly in the trap
so that the precession rate of their spins depends on the
average of the longitudinal magnetic field along their
trajectory [16]. Since the hot atoms go farther away from
the center of the trap, their transverse spin component
rotates at a different rate than for the cold atoms. Now,
when a hot atom crosses the cloud of cold atoms, which has
a different spin direction, its spin experiences a rotation
due to the ISRE in forward scattering. This gives to the hot
atom a longitudinal spin component that depends on the
sign of the ISRE, while the cold atoms acquire the opposite
component. The effect is cumulative: each time the hot
atom crosses the cloud forwards and backwards, the rota-
tions of its spin are additive. After some time, a large
fraction of the hot atoms is transferred towards one spin
state; a large fraction of the cold atoms to the other. A
situation where the two classes of atoms have antiparallel
longitudinal spins is stable as long as lateral collisions are
ignored, since ISRE does not affect antiparallel spin direc-
tions, and since any phase space distribution that depends
only on the energy is time invariant. Finally, because the
atoms explore a region of space that depends on their
energy, the spin state of the cold atoms is dominant at the
center of the trap; the spin state of the hot atoms at the
edges.

To illustrate how this spatial separation arises from spin-
energy correlations, we arbitrarily separate the atoms in
two equal groups, with axial motional energy larger or
smaller than kBT ln2. The difference in density profile
between cold n<ðxÞ and hot n>ðxÞ atoms is then easily
obtained in terms of the error function:

n< � n> ¼ nðxÞ½2RefErf½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2� x2=2

q
�g � 1�: (11)

If the correlation c between longitudinal spin and motional
energy is not 100% but, say, c ¼ 60%, this result is re-
duced by the corresponding factor. The dashed line in
Fig. 2 is a plot of 0:6ðn< � n>Þ according to (11); a

comparison with the other curves shows that this model
already gives a reasonable understanding of the profile.
In conclusion, two major features of the new phenome-

non are a cumulative effect of the ISRE producing a strong
correlation between motional energies and longitudinal
spin directions, and its stability over long times. The nature
of the effect is more ballistic than hydrodynamic. The
shape of the profile depends on the properties of the trap,
not on the interactions: any phase space distribution of the
internal states that depends only on the energy remains
invariant under time evolution in the trap. ISRE therefore
plays a crucial role in creating the profile, but not in
maintaining it.
We thank J. E. Thomas and X. Du for sharing their data

with us and A. Amaricci for help with the numerics.
Note added.—Two other contributions [17,18] also dis-

cussing spin-energy correlations in ultracold gases ap-
peared on arXiv almost simultaneously with the present
work.
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