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We compute the form factors of the photon-quark–anti-quark vertex and the effective vertex of a Higgs-

boson and two gluons to three-loop order within massless perturbative quantum chromodynamics. These

results provide building blocks for many third-order cross sections. Furthermore, this is the first

calculation of complete three-loop vertex corrections.
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In the recent years various next-to-next-to-leading order
(NNLO) calculations to physical observables have been
completed. Among them are the total threshold cross sec-
tion for top-quark pair production in electron positron
annihilation [1], the Higgs-boson production in gluon fu-
sion [2–4], the rare decay rate of the Bmeson into a meson
containing a strange quark and a photon [5,6] and the three-
jet cross section at lepton colliders [7,8]. There exist also a
few results at even next-to-next-to-next-to-next-to-leading
order (NNNNLO), like the total hadronic cross section in
electron positron annihilation [9], the hadronic � lepton [9]
and Higgs-boson decay [10]. It is common to these
NNNNLO and most of the NNNLO results (see, e.g.,
Ref. [11]) that the calculation can be reduced to two-point
functions and that only one mass scale is involved in the
computation (with the notable exception of Ref. [12] which
provides a complete evaluation of three-loop QCD correc-
tions to a four-point function).

In this Letter we provide the first direct NNNLO calcu-
lation of a three-point function within quantum chromo-
dynamics (QCD). To be precise, we consider gauge
invariant building blocks for NNNLO cross sections,
namely, the virtual third-order corrections for the hadronic
Higgs-boson production and the process eþe� ! 2 jets.
The results are conveniently expressed in terms of form
factors of the photon-quark and the effective gluon–Higgs-
boson vertex originating from integrating out the heavy
top-quark loops. Denoting the corresponding vertex func-
tions by ��

q and ���
g , respectively, the scalar form factors

are obtained via

Fqðq2Þ ¼ � 1

4ð1� �Þq2 Trð6q2��
q 6q1��Þ;

Fgðq2Þ ¼
ðq1 � q2g�� � q1;�q2;� � q1;�q2;�Þ

2ð1� �Þ �
��
g ;

(1)

where d ¼ 4� 2� is the space-time dimension, q ¼ q1 þ
q2 and q1 (q2) is the incoming (anti-)quark momentum in
the case of Fq, and Fg depends on the gluon momenta q1
and q2 with polarization vectors "�ðq1Þ and "�ðq2Þ. Some

sample Feynman diagrams contributing to Fq and Fg are
shown in Fig. 1. Starting from three-loop order a new class
of diagrams occurs, the so-called singlet diagrams, where
the external photon is not connected to the fermion line
involving the final-state quarks [see Fig. 1(b)]. Since at
three-loop order there are no counterterm contributions to
the singlet diagrams and furthermore there is no corre-
sponding real emission contribution the sum of all dia-
grams has to be finite. This constitutes an important check
on the correctness of our result.
In the recent years the evaluation of the three-loop form

factor has attracted much attention. After the pioneering
work more than 20 years ago [13–15] where the quark form
factor has been computed to two-loop order the corre-
sponding quantity for the Higgs-boson–gluon coupling
has been evaluated by Harlander in Ref. [16] (see also
[17]). The latter constitutes a building block for the
NNLO predictions of the Higgs-boson production in gluon
fusion at the Fermilab Tevatron and CERN Large Hadron
Collider [2–4]. More recently, in Ref. [18] the two-loop
results have been reconsidered and more terms in the
�-expansion have been added in order to match the three-
loop accuracy. Furthermore, in Refs. [19,20] almost all
master integrals necessary for the three-loop calculation
have been evaluated. However, the most complicated mas-
ter integrals are still unknown.
First steps towards three-loop results for the form factors

have been undertaken in the Refs. [21,22] where the pole

(a) (b) (c)

FIG. 1 (color online). Sample Feynman diagrams contributing
to the Fq [(a) and (b)] and Fg (c) at three-loop order. Straight and

curly lines denote quarks and gluons, respectively.
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parts of Fq [21] and Fg [22] have been extracted from the

behavior of the three-loop coefficient function for inclusive
deep-inelastic scattering [12]. Furthermore, in Ref. [22]
also the finite part of the fermionic contribution to Fq could

be evaluated. With our calculation we were able to confirm
these results but also add the finite contributions which are
necessary for the physical observables.

For the evaluation of the Feynman integrals we devel-
oped two independent set-ups which have in common that
a reduction of all occurring integrals to so-called master
integrals is performed in d space-time dimensions.
Afterwards the (�-expanded) master integrals are inserted.

Following Refs. [23–25] one considers integral repre-
sentations of the coefficient functions of the individual
master integrals in the limit of large space-time dimension
d, evaluates several expansion terms and reconstructs in
this way the complete rational dependence on d. The most
CPU-consuming step, the large d expansion, has been
performed by a program written in PARFORM [26,27], the
parallel version of the computer algebra program FORM

[28]. For the singlet contribution, which involves the most
complicated integrals, also a second approach has been
employed. After generating the Feynman diagrams with
the help of QGRAF [29] they are further processed with Q2E

and EXP [30,31] where a mapping to the underlying family
of the diagrams is achieved. In a next step the reduction of
the integrals is performed with the program package FIRE

[32] which implements a combination of the Laporta al-
gorithm [33] and a generalization [34] of the Buchberger
algorithm (see, e.g., Ref. [35]) to construct Gröbner bases.
Our results are expressed in terms of 22 master integrals.

Eight master integrals are either two-point functions or
products of one- and two-loop integrals and are thus
well-known since many years (see, e.g., Refs. [18,36–
38]). The results for 11 three-point master integrals can
be found in Refs. [19,20], however, the three most com-
plicated integrals, which are shown in Fig. 2, are not yet
known in the literature. Our calculation fixes, by compar-
ing with Ref. [21], the divergent parts of A9;2 and A9;4 and

the finite part of A9;1 and leaves only three coefficients of

the � expansion undetermined. The results read [assuming
massless propagators of the form 1=ðk2 þ i0Þ and pulling

out a factor ði�d=2e��E�Þ3]

A9;1¼ 1
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We obtained a numerical result for the coefficient X9;1

using the Mellin-Barnes (MB) method [39–41], starting
from the general MB representation for the tennis court
diagram of Ref. [42], and applying the corresponding
packages [43,44]. To evaluate numerically X9;2 and X9;4

we used the program FIESTA [45] which is a convenient and
efficient implementation of the sector decomposition algo-
rithm. Our results read

X9;1 � 1429ð1Þ; X9;2 � 528:0ð4Þ; X9;4 ��2085ð5Þ;
(5)

where the accuracy is sufficient for all foreseeable physical

applications. Finally, let us mention that we evaluate the
color factors with the help of the program COLOR [46].
In the following we want to present explicit results for

Fq and Fg. We parameterize the results in terms of the bare

coupling which allows us to factorize all occurring loga-
rithms of the form lnðQ2=�2Þ where Q2 ¼ �q2 > 0.
Furthermore, we cast the results in the form (x ¼ q, g)

Fx ¼ 1þX
n

�
�s

4�

�
n
�
�2

Q2

�
n�
FðnÞ
x ; (6)

and split Fð3Þ
q into the singlet, fermionic, and remaining

gluonic part

FIG. 2. Three most complicated master integrals entering the
result for the three-loop form factor. The notation is adopted
from Refs. [19,20].
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Fð3Þ
q ¼ Fð3Þ;g

q þ F
ð3Þ;nf
q þX

q0
Qq0F

ð3Þ;sing
q ; (7)

where nf stands for the number of active quarks. The

results for Fð1Þ
q and Fð2Þ

q (expanded in � sufficient for the
three-loop calculation) can be found in Eqs. (3.5) and (3.6)

of Ref. [21] and Fð1Þ
g , Fð2Þ

g and F
ð3Þ;nf
q are given in Eqs. (7),

(8) and (6) of Ref. [22], respectively. The pole parts of

Fð3Þ;g
q and Fð3Þ

g are listed in Eqs. (3.7) of Ref. [21] and (9) of

Ref. [22], respectively. Our expressions agree with all these
results which constitutes a strong cross check since in
Refs. [21,22] a completely different approach has been
chosen to evaluate the Feynman integrals. In particular,
no reduction to master integrals has been performed. In this

Letter new results for Fð3Þ;g
q , Fð3Þ;sing

q and Fð3Þ
g are presented.

Since the pole parts are already available in the literature
we display only the corresponding finite parts which read
in the case of a SUðNcÞ color group

F
ð3Þ;gþnf
q jfin ¼ C3

F
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; (8)
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q jfin ¼ dabcdabc
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�
; (9)

Fð3Þ
g jfin ¼ C3
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; (10)

where CF ¼ ðN2
c � 1Þ=ð2NcÞ,CA ¼ Nc, T ¼ 1=2 and dabcdabc ¼ ðN2

c � 1ÞðN2
c � 4Þ=Nc. Let us mention that the result for

F
ð3Þ;sing
q can be extracted [47] from Ref. [12]. Inserting numerical values leads to F

ð3Þ;gþnf
q jfin � �13 656:8 þ

3062:1nf � 164:2n2f � 2:2	9;1 � 0:4	9;2 � 2:2	9;4, F
ð3Þ;sing
q jfin � �5:944, and Fð3Þ

g jfin � 26 102:7 � 8298:8nf þ
585:3n2f � 27:0	9;1 � 21:6	9;2, where 	9;i ¼ 1 corresponds to the one sigma uncertainty given in Eq. (5).

It is interesting to specify our result to a supersymmetric Yang-Mills theory containing a bosonic and fermionic degree
of freedom in the same color representation. This is achieved by setting CA ¼ CF ¼ 2T and nf ¼ 1 which leads to

F
ð3Þ;gþnf
q jfin ¼ C3
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� 54 703�ð3Þ
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� 11 279�ð5Þ
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�
; (11)
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Fð3Þ
g jfin¼C3
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Although we do not know three coefficients analytically,
we believe that the growth of the transcendentality level
continues when going to the next order in � so that all the
results are at most of transcendentality six as was predicted
in Refs. [42,48]. It is interesting to note that these terms
agree between the two form factors.

To summarize, in this Letter we compute the form fac-
tors of the photon-quark and effective Higgs-boson-gluon
vertex to three-loop order within massless QCD. Our re-
sults constitute important building blocks for a number of
physical applications. Among them are the two-jet cross
section in eþe� collisions, the Higgs-boson production in
gluon fusion and the lepton pair production in proton
collisions via the Drell-Yan mechanism. Let us stress that
our result represents the first complete evaluation of three-
loop QCD corrections to a three-point function.

This work is supported by DFG through SFB/TR 9 and
grant RFBR-08-02-01451. The Feynman diagrams were
drawn with the help of AXODRAW [50] and JAXODRAW [51].

Note added.—Our results for the coefficients of the three
master integrals A9;1, A9;2, and A9;4 partially overlap with

those of Ref. [49] where these integrals were evaluated in a
direct way. Agreement has been found for all common
coefficients. If we employ the results of Ref. [49] we obtain
X9;1 � 1428:996 367 866 618 359 1, X9;2 � 528:0583�
0:0326, and X9;4 � �2085:380 547� 0:000 025.
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