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We use gauge-string duality to analytically evaluate the renormalized Polyakov loop in pure Yang-Mills

theories. For SU(3), the result is in quite good agreement with lattice simulations for a broad temperature

range.
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Introduction.—It is well known that a pure SU(N) gauge
theory at high temperature undergoes a phase transition.
This phase transition is of special interest because many of
its aspects can be characterized precisely [1]. In particular,
the order parameter is given by the Polyakov loop

LðTÞ ¼ 1

N
trP exp

�
ig

Z 1=T

0
dtA0

�
; (1)

where the trace is over the fundamental representation, t is
a periodic variable of period 1=T, with T the temperature, g
is a gauge coupling constant, and A0 is a vector potential in
the time direction. The symbol P denotes path ordering.
The usual interpretation of (1) is as a phase factor associ-
ated to the propagation of an infinitely heavy test quark in
the fundamental representation of the gauge group.

Until recently, the lattice formulation, still struggling
with limitations and system errors, and effective field
theories were the main computational tools to deal with
nonweakly coupled gauge theories. The Polyakov loop was
also intensively studied (see, for example, [2] and refer-
ences therein). The situation changed drastically with the
invention of the anti–de Sitter/conformal field theory cor-
respondence [3] that resumed interest in another tool,
string theory.

In this Letter we continue a series of recent studies [4–6]
devoted to a search for an effective string description of
pure gauge theories. In [4], the model was presented for
computing the heavy quark and multiquark potentials at
zero temperature. Subsequent comparison [7] with the
available lattice data has made it clear that the model
should be taken seriously. Later, this model was extended
to finite temperature. The results obtained for the spatial
string tension [5] and the thermodynamics [6] are remark-
ably consistent with the lattice, too. As is known, QCD is a
very rich theory supposed to describe the whole spectrum
of strong interaction phenomena. The question naturally
arises: how well does the model describe other aspects of
quenched QCD? Here, we attempt to analytically evaluate
the Polyakov loop as an important step toward answering
this question [8]. In addition, a good motivation for this test
is lattice data revealed recently by [9].

Before proceeding to the detailed analysis, let us set the
basic framework. As in [4–6], we take the following ansatz
for the five-dimensional background geometry:

ds2 ¼ GnmdX
ndXm ¼ R2w

�
fdt2 þ d~x2 þ 1

f
dz2

�
;

wðzÞ ¼ esz
2

z2
; fðzÞ ¼ 1�

�
z

zT

�
4
;

(2)

where zT ¼ 1=�T. s is a deformation parameter whose
value can be fixed from the critical temperature [10]. We
take a constant dilaton and discard other background fields.
In discussing the Wilson and Polyakov loops within the

gauge-string duality [11], one first chooses a contour C on a
four manifold which is the boundary of a five-dimensional
manifold. Next, one has to study fundamental strings on
this manifold such that the string world sheet has C as its
boundary. In the case of interest, C is an interval between 0
and 1=T on the t axis. The expectation value of the
Polyakov loop is schematically given by the world-sheet
path integral

hLðTÞi ¼
Z

DXe�Sw; (3)

where X denotes a set of world-sheet fields. Sw is a world-
sheet action. In principle, the integral (3) can be evaluated
approximately in terms of minimal surfaces that obey the
boundary conditions. The result is written as hLðTÞi ¼P

nwn exp½�Sn�, where Sn means a renormalized minimal
area whose weight is wn.
Calculating the Polyakov loop.—Given the background

metric, we can attempt to calculate the expectation value of
the Polyakov loop by using the Nambu-Goto action for Sw
in (3):

S ¼ 1

2��0
Z

d2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGnm@�X

n@�X
m

q
: (4)

Here Gnm is the background metric (2). In the case of
interest, this action describes a fundamental string
stretched between the test quark on C (at z ¼ 0) and the
horizon at z ¼ zT . Since we are interested in static con-
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figurations, we choose �1 ¼ t, �2 ¼ z. This yields

S ¼ g

�T

Z zT

0
dzw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fð ~x0Þ2

q
; (5)

where g ¼ R2

2�0 . A prime stands for a derivative with respect

to z.
Now it is easy to find the equation of motion for ~x:

½wf ~x0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fð ~x0Þ2

q
�0 ¼ 0: (6)

It is obvious that Eq. (6) has a special solution ~x ¼ const
that represents a straight string stretched between the
boundary and the horizon. Since this solution makes the
dominant contribution, as seen from the integrand in (5),
we will not dwell on other solutions here.

Having found the solution, we can now compute the
corresponding minimal area. Since the integral (5) is di-
vergent at z ¼ 0 due to the factor z�2 in the metric, we
regularize it by imposing a cutoff �:

SR ¼ g

�T

Z zT

�
dzw: (7)

Subtracting the 1
� term (quark mass) and letting � ¼ 0, we

get a renormalized area

S0 ¼ g

�T

Z zT

0
dz

�
w� 1

z2

�
þ c; (8)

where c is a normalization constant which is scheme-
dependent.

Next, we can perform the integral over z. The result is

S0 ¼ g

� ffiffiffiffi
�

p Tc

T
Erfi

�
Tc

T

�
þ 1� eðTc=TÞ2

�
þ c: (9)

In this formula Tc is given by Tc ¼
ffiffiffi
s

p
=� [5].

Combining the weight factor with the normalization
constant as c ¼ lnw0 � c, we find

LðTÞ ¼ exp

�
c� g

� ffiffiffiffi
�

p Tc

T
Erfi

�
Tc

T

�
þ 1� eðTc=TÞ2

��
;

(10)

with ErfiðzÞ the imaginary error function. This is our main
result.
Numerical results and phenomenological prospects.—It

is of great interest to compare the temperature dependence
of (10) with other results for the high temperature phase of
SU(N) gauge theory. In doing so, we start with lattice
QCD. Clearly, N ¼ 3 is of primary importance. In Fig. 1
a comparison is shown with the recent data of [9]. We see
that our model is in quite good agreement with the lattice
for a broad temperature range 1:05Tc & T & 20Tc. The
maximum discrepancy occurring at T ¼ 1:05Tc is of order
15%. It rapidly decreases with temperature reaching 2% at
T ¼ 2:2Tc and becoming almost negligible up to 20Tc.
Then, it starts to grow back again.
For completeness, we can fit the value of g to be 0.72,

which significantly improves accuracy. For example, at
T ¼ 1:05Tc it becomes of order 6%. One possible expla-
nation for the better fit is that we have evaluated (3)
classically (in terms of strings). If we take into account
semiclassical corrections, then the value of g gets
renormalized.
For practical purposes, the expression (10) looks some-

what awkward. Following [6], we expand S0 and L in
powers of ðTc=TÞ2. If we ignore all higher terms, then a
final result can be written in two simple forms:

LðTÞ 6 exp

�
c� g

�
Tc

T

�
2
�

(11)

or

LðTÞ 6 ec
�
1� g

�
Tc

T

�
2
�
: (12)

In Fig. 2 we have plotted the results. As can be seen,
above 2Tc the discrepancy between the expression (10) and
approximations (10)–(12) is negligible. At lower T the
approximation (11) (exponential law) is poor. It shows a
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FIG. 1 (color online). The renormalized Polyakov loop in SU(3) gauge theory. The solid curve corresponds to (10) with g ¼ 0:62 as
fixed from the heavy quark potential at zero T in [7]. The dashed curve represents the ‘‘best fit’’ with g ¼ 0:72. In both cases, the value
of c is set to 0.10. The dots are from lattice simulations of [9]. The gray (red) dots are for N� ¼ 4, while the black dots are for N� ¼ 8.
We do not display any error bars because they are quite small, comparable to the size of the symbols.
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significant deviation from the lattice. In particular, the
discrepancy occurring at T ¼ 1:05Tc is of order 27%. On
the other hand, the agreement between the approximation
(12) (power law) and the lattice is spectacular. For the
temperature range 1:05Tc & T & 20Tc the power law pro-
vides a reliable approximation to lattice QCD with accu-
racy better than 5%. Moreover, one can use it to describe
all available lattice data of [9] at lower T. Then, the
maximum discrepancy occurring at the lowest available
value T ¼ 1:012Tc is of order 7%.

It is worth noting that the exponential law has been
suggested in [12] based on a dimension-two condensate
hA2i [13]. Such a condensate as well as its possible links to
the UV renormalon and 1=Q2 corrections got intensively
discussed in the QCD literature [14]. As was first shown in
[15], the deformation parameter s of the background ge-
ometry (2) is tied into the appearance of the quadratic
corrections. It is not, therefore, surprising that we have
recovered (11) in our calculations.

Interestingly, the power law (12) is very similar to that
observed for the pressure in [16]. Indeed, for T * 1:2Tc the
pressure is simply p=T4 � fpert½1� ðTc=TÞ2�.

Conclusions.—In this Letter we have evaluated the
Polyakov loop using the now standard ideas motivated by
gauge-string duality. A key point is the use of the back-
ground metric (2) which is singled out by the earlier works
[4–6]. (Note that there is no need for any free parameters
except a scheme-dependent normalization constant c.) The
overall conclusion is that the same background metric
results in a very satisfactory description of the Polyakov
loop as well. Of course, we still have a lot more to learn
before answering the question posed at the beginning of
this Letter.
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FIG. 2 (color online). A comparison of different LðTÞ curves for SU(3) gauge theory. As in Fig. 1, the solid curve corresponds to
(10), and the dots are from lattice simulations of [9]. The dashed curve corresponds to the exponential law (11). The dash-dotted curve
corresponds to the power law (12). In all the cases, g ¼ 0:62 and c ¼ 0:10. We display error bars only if they are comparable to the size
of the symbols.
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