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Using gauge-gravity duality, we study the creation and evolution of anisotropic, homogeneous strongly

coupled N ¼ 4 supersymmetric Yang-Mills plasma. In the dual gravitational description, this corre-

sponds to horizon formation in a geometry driven to be anisotropic by a time-dependent change in

boundary conditions.
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Introduction.—The realization that the quark-gluon
plasma (QGP) produced at RHIC is strongly coupled [1]
has prompted much interest in the study of strongly
coupled non-Abelian plasmas. Hydrodynamic simulations
of heavy ion collisions have demonstrated that the QGP
produced at RHIC is well modeled by near-ideal hydro-
dynamics [2], which is a signature of a strongly coupled
system. The success of hydrodynamic modeling of
RHIC collisions suggests that the produced plasma locally
isotropizes over a time scale �iso & 1 fm=c [3]. Under-
standing the dynamics responsible for such rapid isotrop-
ization in a far-from-equilibrium non-Abelian plasma is a
challenge.

Because of the difficulty in studying real time dynamics
in QCD at strong coupling, it is useful to have a toy model
where one can study the dynamics of a far-from-
equilibrium, strongly coupled non-Abelian plasma in a
controlled setting. One such toy model is strongly coupled
N ¼ 4 supersymmetric Yang-Mills (SYM) theory, where
one can use gauge-gravity duality to study the theory in the
limit of large Nc and large ’t Hooft coupling �. This has
motivated much work devoted to studying various non-
equilibrium properties of thermal SYM plasma.

We are interested in exploring the physics of isotropiza-
tion in far-from-equilibrium non-Abelian plasmas, in the
simplest setting which allows complete theoretical control.
This leads us to focus on the dynamics of homogeneous,
but anisotropic, states in strongly coupled, large Nc SYM
theory. A conceptually simple way to create nonequilib-
rium states is to turn on time-dependent background fields
coupled to operators of interest. To create states in which
the stress tensor is anisotropic, it is natural to consider the
response of the theory to a time-dependent change in the
spatial geometry. For simplicity, we limit attention to
geometries which have spatial homogeneity (i.e., trans-
lation invariance in all spatial directions), an Oð2Þ rotation
invariance, and a constant spatial volume element. The
most general metric satisfying these conditions may be
written as

ds2 ¼ �dt2 þ eB0ðtÞdx2? þ e�2B0ðtÞdx2k; (1)

where x? � fx1; x2g.
The function B0ðtÞ describes a time-dependent shear in

the geometry; neglecting (four-dimensional) gravity, B0ðtÞ
is a function one is free to choose arbitrarily. We will
choose B0ðtÞ to be asymptotically constant as t ! �1.
Wewill also choose the initial state to be the SYM vacuum.
A time-dependent geometry will do work on the quantum
system. Consequently, the state in the distant future will be
a nonvacuum state which (when the geometry is once again
static) will be indistinguishable from a thermal state.
During the evolution, because the metric (1) changes in
an anisotropic fashion, the resulting plasma will also be
anisotropic with different pressures (i.e., stress tensor ei-
genvalues) in the longitudinal (xk) and transverse (x?)
directions. Spatial translation invariance implies that no
hydrodynamic modes can be excited. Therefore, the non-
equilibrium plasma produced by the changing metric (1)
provides a nice laboratory to study the relaxation of non-
hydrodynamic degrees of freedom in a far-from-
equilibrium setting. We choose

B0ðtÞ ¼ 1
2c½1� tanhðt=�Þ�: (2)

For c � 0, this represents a time-dependent rescaling of
lengths in transverse directions relative to those in the
longitudinal direction, over a period of order �. The lack
of any other scale in conformally invariant SYM theory
implies that the final state energy density will be Oð��4Þ.
Without loss of generality we measure all quantities in
units where � ¼ 1.
Gravitational description.—Gauge-gravity duality [4]

provides a gravitational description of large Nc SYM the-
ory in which the 5D dual geometry is governed by
Einstein’s equations with a cosmological constant.
Einstein’s equations imply that the boundary metric
gB��ðxÞ, which characterizes the geometry of the spacetime

boundary, is dynamically unconstrained. The specification
of the boundary metric serves as a boundary condition for
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the 5D Einstein equations. This reflects the fact that the
dual field theory (residing on the boundary) does not back-
react on the boundary geometry, although the boundary
geometry influences the field theory dynamics.

We consider a 5D geometry which coincides with AdS5
in the distant past. This geometry is dual to the SYM
vacuum. A time-dependent boundary metric gB��ðxÞ will
create gravitational radiation which propagates from the
boundary into the bulk. This infalling gravitational radia-
tion will lead to the formation of a horizon, which acts as
an absorber of gravitational radiation—any radiation
which passes through the horizon cannot escape back to
the boundary. At late times when the boundary geometry is
no longer changing, the bulk geometry outside the horizon
will relax and asymptotically become static. This is the
gravitational description of thermalization in SYM theory.

Diffeomorphism and translation invariance allows one
to chose the metric ansatz

ds2 ¼ �Adv2 þ�2½eBdx2? þ e�2Bdx2k� þ 2drdv; (3)

where A, B, and � are all functions of the radial coordinate
r and time v only. Infalling radial null geodesics have
constant values of v (as well as x? and xk). Outgoing
radial null geodesics satisfy dr=dv ¼ 1

2A. At the boundary,

located at r ¼ 1, the coordinate v coincides with the
boundary time t. The geometry in the bulk at v > 0 corre-
sponds to the causal future of t > 0 on the boundary. The
form of the metric (3) is invariant under the residual
diffeomorphism r ! rþ fðvÞ, where fðvÞ is arbitrary.

With a metric of the form (3), Einstein’s equations may
be reduced to the following set of differential equations:

0 ¼ �ð _�Þ0 þ 2�0 _�� 2�2; (4a)

0 ¼ �ð _BÞ0 þ 3
2ð�0 _Bþ B0 _�Þ; (4b)

0 ¼ A00 þ 3B0 _B� 12�0 _�=�2 þ 4; (4c)

0 ¼ €�þ 1
2ð _B2�� A0 _�Þ; (4d)

0 ¼ �00 þ 1
2B

02�; (4e)

where, for any function hðr; vÞ,
h0 � @rh; _h � @vhþ 1

2A@rh: (5)

Equations (4d) and (4e) are constraint equations; the radial
derivative of Eq. (4d) and the time derivative of Eq. (4e) are
implied by Eqs. (4a)–(4c).

The above set of differential equations must be solved
subject to boundary conditions imposed at r ¼ 1. The
requisite condition is simply that the boundary metric
gB��ðxÞ coincide with our choice (1) of the 4D geometry.

In particular, we must have

lim
r!1�ðr; vÞ=r � 1; lim

r!1Bðr; vÞ � B0ðvÞ: (6)

One may fix the residual diffeomorphism invariance by
demanding that

lim
r!1½Aðr; vÞ � r2�=r ¼ 0: (7)

These boundary conditions, plus initial data satisfying the
constraint (4e) on some v ¼ const slice, uniquely specify
the subsequent evolution of the geometry.
Given a solution to Einstein’s equations, the SYM stress

tensor is determined by the near-boundary behavior of
the 5D metric [5]. If SG denotes the gravitational action,

then the SYM stress tensor is given by T��ðxÞ ¼
½2= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gBðxÞp ��SG=�gB��ðxÞ.
Near the boundary one may solve Einstein’s equations

with a power series expansion in r. Specifically, A, B, and
� have asymptotic expansions of the form

Aðr; vÞ ¼ X

n¼0

½anðvÞ þ �nðvÞ logr�r2�n; (8a)

Bðr; vÞ ¼ X

n¼0

½bnðvÞ þ �nðvÞ logr�r�n; (8b)

�ðr; vÞ ¼ X

n¼0

½snðvÞ þ �nðvÞ logr�r1�n: (8c)

The boundary conditions (6) and (7) imply that b0ðvÞ �
B0ðvÞ, s0ðvÞ � 1, a0ðvÞ � 1, and a1ðvÞ � 0. Substituting
the above expansions into Einstein’s equations and solving
the resulting equations order by order in r, one finds that
there is one undetermined coefficient, b4ðvÞ. All other
coefficients are determined by the boundary geometry,
Einstein’s equations, and b4ðvÞ [6].
By substituting the above series expansions into the

variation of the on shell gravitational action, one may
compute the expectation value of the stress tensor in terms
of the expansion coefficients. This procedure has been
carried out in Ref. [5], so we simply quote the results. In
terms of the expansion coefficients, the SYM stress tensor
reads

T�
� ¼ ðN2

c=2	
2Þ diagð�E;P?;P?;P kÞ; (9)

where (with bðkÞ0 � @kvb0)

�E ¼ 3
4a4 þ 1

256½3ðbð1Þ0 Þ4 þ 14ðbð2Þ0 Þ2 � 4bð1Þ0 bð3Þ0 �; (10a)

P? ¼ �1
4a4 þ b4 þ 1

768½21ðbð1Þ0 Þ4 � 468ðbð1Þ0 Þ2bð2Þ0

þ 10ðbð2Þ0 Þ2 þ 4bð1Þ0 bð3Þ0 þ 64bð4Þ0 �; (10b)

P k ¼ �1
4a4 � 2b4 þ 1

768½21ðbð1Þ0 Þ4 þ 936ðbð1Þ0 Þ2bð2Þ0

þ 10ðbð2Þ0 Þ2 þ 4bð1Þ0 bð3Þ0 � 128bð4Þ0 �: (10c)

Numerics.—One may solve the Einstein equations (4a)–

(4c) for the time derivatives _�, _B, and A00. Define

�ðr; vÞ �
Z 1

r
dw½�ðw; vÞ3 � h1ðw; vÞ� �H1ðr; vÞ; (11a)

�ðr; vÞ �
Z 1

r
dw½2�ðw; vÞB0ðw; vÞ�ðw; vÞ�3=2

� h2ðw; vÞ� �H2ðr; vÞ; (11b)
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where Hn is an indefinite (radial) integral of hn,

hn ¼ H0
n: (12)

Then Eqs. (4a)–(4c) are solved by

_� ¼ �2���2; (13a)

_B ¼ �3
2���3=2; (13b)

A00 ¼ �4� 24��0��4 þ 9
2�B0��3=2: (13c)

The functions hnðr; vÞ are not constrained by Einstein’s
equations—their presence inside the integrands of Eq. (11)
are compensated by the subtraction of their integrals
Hnðr; vÞ. However, since we have chosen the upper limit
of integration in Eq. (11) to be r ¼ 1, the functions
hnðr; vÞ must be suitably chosen so that the integrals (11)
are convergent. The simplest choice to accomplish this is to
set h1ðr; vÞ equal to the asymptotic expansion of �ðr; vÞ3
up to order 1=rk, for some k > 1, and to set h2ðr; vÞ equal
to the asymptotic expansion of 2�ðr; vÞB0ðr; vÞ=�ðr; vÞ3=2
up to order 1=rk. In our numerical solutions reported
below, we use k � 4. This choice makes the large r con-
tribution to the integrals in Eq. (11) quite small. As the
coefficients of the series expansions (8) only depend on
b0ðvÞ and b4ðvÞ and their v derivatives, this choice deter-
mines hnðr; vÞ in terms of one unknown function b4ðvÞ.

With the subtraction functions hn specified by the afore-
mentioned asymptotic expansions, integrating Eq. (12)
fixes the compensating integrals Hn up to an integration
constant which is an arbitrary function of v. Integrating
Eq. (13c) for Aðr; vÞ introduces two further (v dependent)
constants of integration. The most direct route for fixing
these constants of integration is to match the large r
behavior of the expressions (13a) and (13b) and the inte-
grated version of Eq. (13c) to the corresponding expres-
sions obtained from the series expansions (8). This fixes all
integration constants in terms of b0 and b4.

Our algorithm for solving the initial value problem with
time-dependent boundary conditions is as follows. Given
an initial geometry defined by Bðr; v0Þ, one knows b4ðv0Þ.
Integrating the constraint equation (4e), with the fully
determined asymptotic behavior (8c), yields �ðr; v0Þ.
From this information, one can compute Aðr; v0Þ by inte-
grating Eq. (13c). With Aðr; v0Þ, Bðr; v0Þ, and �ðr; v0Þ
known, one can then compute the time derivative
@vBðr; v0Þ from Eq. (13b) and step forward in time,

Bðr; v0 þ �vÞ � Bðr; v0Þ þ @vBðr; v0Þ�v: (14)

Repeating the above process using this updated profile of B
determines � and A at time v0 þ�v, from which one
computes @vB for the next time step. For an initial geome-
try corresponding to the SYM vacuum, plus the choice (2)
of boundary data, one has

Bðr;�1Þ ¼ c; �ðr;�1Þ ¼ r; Aðr;�1Þ ¼ r2:

(15)

An important practical matter is fixing the computation
domain in r—how far into the bulk does one want to
compute the geometry? If a horizon forms, then one may
excise the geometry inside the horizon as this region is
causally disconnected from the geometry outside the hori-
zon. Furthermore, one must excise the geometry to avoid
singularities behind horizons [7]. To perform the excision,
one first identifies the location of an apparent horizon (an
outermost marginally trapped surface) which, if it exists,
must lie inside a true horizon [8]. We have chosen to make
the incision slightly inside the location of the apparent
horizon. For the metric (3), the location rhðvÞ of the

apparent horizon is given by _�ðrhðvÞ; vÞ ¼ 0 or, from
Eq. (13a), �ðrhðvÞ; vÞ ¼ 0.
Results and discussion.—Figure 1 shows a plot of the

energy density and transverse and longitudinal pressures
produced by the changing boundary geometry (1), with
c ¼ 2. These quantities begin at zero in the distant past
when the system is in its vacuum state, and at late times
approach thermal equilibrium values given by

T
��
eq ¼ ð	2N2

cT
4=8Þ diagð3; 1; 1; 1Þ; (16)

where T is the final equilibrium temperature.
Nonmonotonic behavior is seen when the boundary ge-
ometry changes most rapidly around time zero [9].
Figure 2 displays the congruence of outgoing radial null

geodesics, for c ¼ 2. The surface coloring shows A=r2. In
the SYMvacuum (i.e., at early times) this quantity equals 1,
while at late times A=r2 ¼ 1� ðrh=rÞ4. Excised from the
plot is a region of the geometry behind the apparent
horizon. In the SYM vacuum, outgoing geodesics are given
by 1=rþ v=2 ¼ const, and appear as straight lines in the
early part of Fig. 2. In the vicinity of v ¼ 0, when the
boundary geometry is changing rapidly and producing
infalling gravitational radiation, the geodesic congruence
changes dramatically from the zero temperature form to a
finite temperature form. As is evident from the figure, at
late times some outgoing geodesics do escape to the

FIG. 1 (color online). Energy density, longitudinal and trans-
verse pressure, all divided by N2

c=2	
2, as a function of time for

c ¼ 2.
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boundary, while others fall into the bulk and never escape.
Separating the ‘‘escaping’’ and ‘‘plunging’’ geodesics is
one geodesic which does neither—this geodesic, shown as
the black line in Fig. 2, defines the true event horizon of the
geometry.

Figure 3 plots the area of the apparent and true event
horizons, again for c ¼ 2. Nearly all growth of the appar-
ent horizon area occurs in the interval�2< v< 0, during
which the boundary geometry is changing rapidly. In con-
trast, the area of the true horizon grows in the distant past
long before the boundary geometry is significantly per-
turbed. This is a reflection of the global nature of event
horizons—the location of the event horizon depends on the
entire history of the geometry. It has been argued [11] that
it is the area element of the apparent horizon, pulled back
to the boundary along v ¼ const infalling null geodesics,
which should be identified with the entropy density (times
4GN) in the dual field theory.

Table I shows, for various values of c, the final equilib-
rium temperature T and a measure of the isotropization
time �iso. (These quantities only depend on jcj.) We define
�iso as the time when the transverse and longitudinal pres-
sures equal their final values to within 10%. When jcj * 2,
we find that �iso � 2�, while for jcj & 2, �iso � 0:7=T.
Since �iso is only a few times longer than the time scale
� over which the boundary geometry (1) is changing, this
measure of isotropization time should best be viewed as an
upper bound on isotropization times associated with
plasma dynamics alone. Nevertheless, it is interesting to
note that �iso � 0:7=T corresponds to a time of 1

2 fm=c

when T ¼ 350 MeV, similar to estimates of thermaliza-
tion times inferred from hydrodynamic modeling of RHIC
collisions [3].
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TABLE I. Final equilibrium temperature T and isotropization
time �iso (in units of T�1 or �), for various values of c. The
isotropization time �iso is the time at which the pressures deviate
from their equilibrium values by less than 10%.

jcj 1 1.5 2 2.5 3 3.5 4

�T 0.23 0.31 0.41 0.52 0.65 0.79 0.94

�isoT 0.67 0.68 0.71 0.92 1.2 1.5 1.8

�iso=� 3.0 2.2 1.7 1.8 1.8 1.9 1.9

FIG. 2 (color online). The congruence of outgoing radial null
geodesics. The surface coloring displays A=r2. The excised
region is beyond the apparent horizon, which is shown by the
dashed green curve. The geodesic shown as a solid black line is
the event horizon; it separates geodesics which escape to the
boundary from those which cannot escape.
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