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We show that the ability to probe primordial non-Gaussianity with cluster counts is drastically im-

proved by adding the excess variance of counts which contains information on the clustering. The con-

flicting dependences of changing the mass threshold and including primordial non-Gaussianity on the

mass function and biasing indicate that the self-calibrated cluster counts break the degeneracy be-

tween primordial non-Gaussianity and the observable-mass relation. Based on the Fisher matrix analysis,

we show that the count variance improves constraints on fNL by more than an order of magnitude. It ex-

hibits little degeneracy with dark energy equation of state. We forecast that upcoming Hyper Suprime-

Cam survey and Dark Energy Survey will constrain primordial non-Gaussianity at the level �ðfNLÞ � 8,

which is competitive with constraints from next-generation cosmic microwave background experiments.
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The measurement of departures from Gaussianity of the
initial perturbations provides a unique opportunity to probe
the early Universe [1]. While the standard single field
slow-roll inflation models predict primordial perturbations
very close to Gaussian, some models such as multifield
models and the curvaton model can produce the level of
non-Gaussianity high enough to be detected in ongoing or
future surveys. Thus specific forms of primordial non-
Gaussianity contain valuable information on how the initial
density fluctuations are generated.

Observationally, primordial non-Gaussianity has mainly
been studied using the temperature fluctuation of the cos-
mic microwave background (CMB). Recently it has at-
tracted considerable attention given a possible detection
of non-Gaussianity by Yadav and Wandelt [2]. However,
the detection of non-Gaussianity in the CMB is somewhat
controversial in the sense that independent analyses yield
slightly different results [3], suggesting the importance of
other observational probes independent of the CMB.
Another powerful probe of primordial non-Gaussianity is
provided by the large-scale structure of the Universe. In
particular, non-Gaussianity induces a scale-dependent halo
bias [4–8], and thus by studying large-scale distributions of
astronomical objects one can obtain tight constraints that
are competitive with the CMB. Constraints from the large-
scale structure are also important given that non-
Gaussianity can be scale dependent such that deviations
from Gaussian are larger at smaller scales [9].

Primordial non-Gaussianity is also sensitive to the abun-
dance of massive clusters and its redshift evolution [4,10].
An advantage of using massive clusters is its reasonable
one-to-one correspondence with dark halos, which sug-
gests that halo assembly bias (e.g., [6]) is less important.
A challenge here is how to calibrate cluster masses; since
the cluster mass is not directly observable, one has to resort
to well-calibrated correlations between cluster masses and

observable quantities such as luminosities, temperatures,
and the numbers of member galaxies in order to infer
cluster masses. The observable-mass relations always in-
volve uncertainties, suggesting that the change of cluster
abundances by primordial non-Gaussianity may be com-
pensated by modifying the relation between observables
and masses. Therefore constraints from cluster counts rely
on how well we can calibrate such observable-mass
relations.
In this Letter, we point out that clustering information

breaks the degeneracy and allows us to determine primor-
dial non-Gaussianity surprisingly well with cluster counts.
This is because the clustering bias for massive clusters is
quite sensitive to both cluster masses and primordial non-
Gaussianity, and more importantly, because the cluster
abundance and biasing show conflicting dependences on
these. Such self-calibrated cluster count technique has
been discussed extensively in the context of accurate
dark energy probes [11–14], but its use for primordial
non-Gaussianity has not been explored.
Here we quantify non-Gaussianity of the local form

using the standard parametrization, � ¼ �þ fNLð�2 �
h�2iÞ, where � is the curvature perturbation and � is an
auxiliary random-Gaussian field. The parameter fNL > 0
(< 0) indicates that the initial density field is positively
(negatively) skewed. The current level of constraints on
primordial non-Gaussianity is jfNLj & Oð100Þ [2,3,6]. We
adopt a non-Gaussian correction factor of the cluster mass
function based on the Edgeworth expansion [9]:

dn=dM

dnG=dM
¼ 1þ �S3
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where � ¼ �c=�, �c � 1:68 is the critical linear overden-
sity,� ¼ �ðM; zÞ is the linear fluctuation on the mass scale
of M which we compute using the transfer function TðkÞ
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presented by Eisenstein and Hu [15] ignoring the baryon
wiggle. We adopt models of Warren et al. [16] for the mass
function in the Gaussian case, dnG=dM. The skewness S3
is related to fNL as [8]

�S3 ¼ fNL
�3
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where �2
� ¼ k3P�ðkÞ=2�2 is the power spectrum of the

curvature perturbation, � ¼ ½2DðzÞTðkÞ=3�M�ðck=H0Þ2,
DðzÞ is the linear growth rate normalized to ð1þ zÞ�1 in
the matter-dominant era, and k2 ¼ k21 þ k22 þ 2�k1k2. For
the window function WðM; kÞ we adopt the real space top-
hat filter. In practice we use the following fitting formula
for �S3:

�S3 � ð8:66� 10�5ÞfNL �M

Dð0Þ
� ��1:4�8m

�0:0272�0:11ðns�0:96Þ�0:0008 logm10

10 ; (3)

with m10 ¼ ½M=ð1010h�1M�Þ��3ð�Mh
2Þ�1 and � ¼

�Mh exp½��bð1þ
ffiffiffiffiffiffi
2h

p
=�MÞ� is the so-called shape pa-

rameter [17]. This fitting formula should be accurate at a
few percent level in the mass scale range 107h�1M� &
M & 1018h�1M�.

The non-Gaussian correction of the halo bias is com-
puted as [8]

�bðM; z; kÞ ¼ 2fNL�c

�
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The halo bias in the Gaussian case bG is assumed to be the
form presented by Sheth and Tormen [18].

Figure 1 illustrates the reason why the clustering infor-
mation is so important. As shown in the figure, including
positive fNL increases the number of clusters above some
mass thresholdMth. This increment can be compensated by
raising Mth. However, these two models with the same
numbers of clusters result in quite different halo biases
because both raising Mth and fNL increase the biasing.
Thus by including clustering information we can strongly
break the degeneracy betweenMth and fNL, and can obtain
tight constraints on fNL.

We now forecast constraints on fNL from future cluster
surveys. We include the clustering information using a
count-in-cell analysis. Specifically we approximate the
Fisher matrix as [12,13]

F�� ¼ mT
;�C

�1m;� þ 1

2
Tr½C�1S;�C

�1S;�� þ
���

�2
pð�Þ

;

(5)

where�p represents the prior information on each parame-

ter, and the covariance matrix is given by C �
Sþ diagðmÞ. The number count m and its variance S are
computed as

mi ¼ Vi

Z
i

dMobs

Mobs

Z
dM
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Sij ¼ 1

ViVj

Z d3k

ð2�Þ3 W
�
i ðkÞWjðkÞPðkÞbibj; (7)

bi ¼ Vi

Z
i

dMobs

Mobs

Z
dM

dn

dM
bðM; kÞpðMobsjMÞ; (8)

where the subscript i run over redshift, mass, and angular
bins. The power spectrum is described by PðkÞ, and the
k-space window function by WiðkÞ. Since the off-diagonal
elements of S are small in our case, here we consider only
the diagonal elements. The function pðMobsjMÞmodels the
accuracy of the cluster mass determination from observ-
ables. Following [13], we assume the log-normal distribu-
tion for pðMobsjMÞ, with the median of lnMþ lnMbias and
the scatter of �lnM, and regard �lnM and lnMbias (which

FIG. 1. The illustration of self-calibrating cluster counts to
probe primordial non-Gaussianity fNL. Here the redshift is z ¼
1. In cluster surveys, we basically obtain the number of clusters
above some mass threshold Mth. The plot indicates that the
increase of the mass function dn=dM due to positive fNL can
be compensated by increasing the Mth. However, while the two
models predict the same number of clusters, the corresponding
halo bias bðMÞ (here we adopted k ¼ 0:02h Mpc�1) are quite
different because both raising Mth and fNL increase bðMÞ (see
arrows). Although in this plot the scatter in the observable-mass
relation is ignored for simplicity, it will be included in the Fisher
matrix analysis.
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corresponds toMth in Fig. 1) as nuisance parameters. Note
that the first term of the Fisher matrix [Eq. (5)] represents
the information from number counts, whereas the second
term the information from the variance of the counts which
contain clustering (biasing) information. Using the Fisher
matrix, one can estimate a marginalized error on each

parameter as �ð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðF�1Þ��
p

.
We calculate the Fisher matrix in 10-dimensional pa-

rameter space; 6 standard cosmological parameters includ-
ing dark energy equation of state (the matter density�Mh

2,
the baryon density �bh

2, the power spectrum tilt ns, the
normalization of the power spectrum �	 [19], the dark

energy density �DE, and dark energy equation of state
w), 1 parameter representing primordial non-Gaussianity
(fNL), and 3 parameters from the observable-mass relation,
�lnM and lnMbias ¼ lnMbias;0 þ 
 lnð1þ zÞ. The five-year

Wilkinson Microwave Anisotropy Probe (WMAP5) result
for �CDM [20], ð�Mh

2;�bh
2; ns; �	 ;�DE; wÞ ¼

ð0:133; 0:0227; 0:963; 4:61� 10�5; 0:742;�1Þ, is adopted

as our fiducial cosmological model. We add conservative
priors to the first 4 parameters, �pð�Mh

2Þ ¼ 0:006,

�pð�bh
2Þ ¼ 0:0006, �pðnsÞ ¼ 0:015, and �pð�	 Þ ¼

10�6; these are the level of accuracies which has already
been achieved by WMAP5. In addition, our fiducial model
has fNL ¼ 0, �lnM ¼ 0:25, lnMbias;0 ¼ 0, and 
 ¼ 0.
For illustrative purposes, we consider the following

three upcoming surveys; Hyper Suprime-Cam on Subaru
telescope (HSC; since the design of the HSC cluster survey
is still tentative, we consider both 1000 deg2 and
2000 deg2), Dark Energy Survey (DES; 5000 deg2) [21],
and Large Synoptic Survey Telescope (LSST; 20 000 deg2)
[22]. We adopt a simplified assumption that these optical
surveys will find clusters with Mobs > 1013:7h�1M� out to
zmax ¼ 1:4, 1.0, and 1.7, respectively. For the count-in-cell
analysis, we use the cell size of 20 deg2 and the redshift
interval �z ¼ 0:1. Three mass bins with spacing of
� logMobs ¼ 0:5 are also adopted.
In Fig. 2, we show marginalized constraints on fNL and

the correlations with the parameters �lnM, expected for the
2000 deg2 HSC cluster survey. As expected, constraints
are drastically improved by combining the number counts
with the variance which includes the clustering informa-
tion. This is partly because constraints from number counts
and variance show different degeneracy directions, sug-
gesting that both the number counts and clustering are
essential for accurate determinations of fNL.
Table I summarizes forecasted constraints on various

cosmological parameters. For all the upcoming surveys,
the count variance drastically enhances the ability to probe
primordial non-Gaussianity, by more than an order of
magnitude improvement in fNL compared with the number
counts alone. Predicted marginalized errors of �ðfNLÞ � 8
for HSC and DES and �2 for LSST are competitive with
constraints from next-generation CMB experiments (e.g.,
[23]) and galaxy power spectrum measurements (e.g.,
[4,24]). The variance helps to regulate the observable-
mass relation, improving an accuracy of lnMbias;0 and

�lnM measurements by a factor of 2 or more.
Measurements of dark energy equation of state are im-
proved as well, which is consistent with earlier work. We
find that w and fNL are not correlated very much, indicat-
ing that we can well determine these two parameters

FIG. 2. Expected marginalized constraints in the fNL-�lnM

plane from the upcoming 2000 deg2 HSC cluster survey.
WMAP5 cosmology is assumed as a fiducial model. Contours
indicate the 68% confidence regions from the number counts
(dotted), the variance of the counts which contains the clustering
information (dash-dotted), and the combination of the number
counts and variance (solid).

TABLE I. Marginalized constraints on cosmological parameters estimated from the Fisher matrix analysis using the number counts
and/or the variance of counts (clustering). WMAP5 cosmology is assumed as a fiducial model. Constraints in four future survey
parameters, HSC1 (1000 deg2, zmax ¼ 1:4), HSC2 (2000 deg2, zmax ¼ 1:4), DES (5000 deg2, zmax ¼ 1:0), and LSST (20000 deg2,
zmax ¼ 1:7), are presented.

Counts Variance Countsþ variance

Survey �ð�DEÞ �ðwÞ �ðfNLÞ �ð�DEÞ �ðwÞ �ðfNLÞ �ð�DEÞ �ðwÞ �ðfNLÞ
HSC1 0.030 0.151 240.4 0.012 0.189 37.8 0.010 0.103 8.1

HSC2 0.023 0.108 188.2 0.011 0.142 28.0 0.009 0.074 6.2

DES 0.032 0.081 210.6 0.011 0.102 35.3 0.009 0.055 7.9

LSST 0.009 0.037 106.1 0.006 0.051 6.9 0.005 0.024 1.9
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simultaneously using self-calibrated cluster counts.
Figure 3 shows contours of �ðfNLÞ as a function of the
survey area and the maximum redshift. The expected con-
straints on fNL is a steep function of the maximum redshift
even at z > 1, which indicate the importance of the deep
surveys to detect clusters out to z * 1.

We have shown that adding clustering information from
the count variance drastically improves measurements of
primordial non-Gaussianity with cluster counts. Although
the calibration of cluster masses limits the use of cluster
counts as a cosmological probe, the self-calibration tech-
nique allows us to determine both the observable-mass
relation and fNL simultaneously. The significant effect of
the count variance comes from the conflicting dependences
of the mass threshold and fNL on the cluster mass function
and biasing parameter (Fig. 1). Allowing dark energy
equation of state to vary does not degrade fNL measure-
ments very much. Resulting forecasted constraints on fNL,
�ðfNLÞ � 8 for HSC and DES and �2 for LSST, suggest
that cluster counts can become a competitive probe com-
pared to the CMB or the large-scale galaxy power
spectrum.

We have here made a number of simplified assumptions.
For instance, it is important to check how the possible
redshift evolution of the observable-mass relation affects
our results [12,13]. The impact of other systematics, such

as cluster photometric redshifts [14] and the effect of halo
assembly bias [25], should be addressed. On the other
hand, we used only the count variance of each cell as the
clustering information. Since the effect of primordial non-
Gaussianity is more significant at larger scales, including
the count covariance (or including the full clustering in-
formation with the power spectrum [11]) may improve the
constraints further. We leave such more comprehensive
treatments for future work.
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