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The 7.6 eVelectromagnetic transition between the nearly degenerate ground state and first excited state

in the 229Th nucleus may be very sensitive to potential changes in the fine-structure constant, � ¼ e2=@c.

However, the sensitivity is not known, and nuclear calculations are currently unable to determine it. We

propose measurements of the differences of atomic transition frequencies between thorium atoms (or ions)

with the nucleus in the ground state and in the first excited (isomeric) state. This will enable extraction of

the change in nuclear charge radius and electric-quadrupole moment between the isomers, and hence the

� dependence of the isomeric transition frequency with reasonable accuracy.
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The isotope 229Th has the lowest known excited state in
nuclei; recent measurements show that the 3=2þ state lies
just 7.6 eV above the 5=2þ ground state [1]. The width of
this level is estimated to be about 10�4 Hz [2], which may
explain why it is so hard to find the direct radiation of this
very weak transition. Nevertheless, the frequency is within
the range of lasers, and it has been proposed to use this
narrow nuclear transition as a possible reference for an
optical clock of very high accuracy [3]. Additionally, this
transition could be a sensitive probe of possible variation of
fundamental constants [4] because the near degeneracy of
these isomers is a result of cancellation between very large
energy contributions (order of MeV). Since these contri-
butions would have different dependences on fundamental
constants, any variation would be enhanced in the transi-
tion frequency. In Ref. [4], the relative effects of variation
of � and the dimensionless strong interaction parameter
mq=�QCD were estimated to be enhanced by 5 orders of

magnitude.
An enhancement to the � sensitivity of this magnitude

would have very important consequences for laboratory
searches of � variation. Because the isomeric 229Th reso-
nance has a narrow linewidth and an extraordinary insen-
sitivity to external perturbations, an optical clock utilizing
this reference may have very high accuracy and high
immunity from systematic frequency shifts [3]. By com-
paring this ‘‘nuclear clock’’ frequency with that of any
other narrow optical or microwave transition (e.g., the Cs
or Hgþ frequency standards), one can test the variation of
fundamental constants. Coupled with the enhancement in
sensitivity, such a setup would be the most sensitive labo-
ratory probe of� variation to date, possibly gaining several
orders-of-magnitude improvement over the current limits
of _�=� ¼ ð�1:6� 2:3Þ � 10�17 yr�1 [5].

The sensitivity of the transition frequency to variation of
� can be expressed as

�! ¼ �VC

��

�
;

�!

!
¼ K

��

�
; (1)

where �VC is the difference in Coulomb energies between
the two isomers, and K is the enhancement factor: K ¼
�VC=!. Since the Coulomb energy of this nucleus is of
order 109 eV, even a relatively small variation in VC could
produce a large enhancement. For �VC ¼ 100 keV and
��=� ¼ 10�16, �! ¼ 10�11 eV ¼ 2:4� 103 Hz, which
is 4 orders of magnitude larger than the limits placed on
shifts in atomic transitions in Ref. [5].
However, different nuclear calculations give wildly dif-

ferent values for �VC. References [6,7] claim that both
isomers have identical deformations and therefore the
same Coulomb energies to within roughly 30 keV (corre-
sponding to K & 4000). Reference [8] gives a value of
30 keV, while the calculations of [9] give values in the
range�300 keV<�VC < 450 keV, depending on partic-
ulars of the model used. Lastly, Ref. [10] uses Nilsson
wave functions to show that the value of �VC as a function
of deformation changes from 1.5 MeVat zero deformation
down to �0:5 MeV at � ¼ 0:3. Reference [10] concludes
that a very small value of the Coulomb energy shift seems
improbable.
In this Letter we propose a different method for extract-

ing sensitivity to � variation using direct laboratory mea-
surements of the change in nuclear mean-square charge
radius, �hr2i, and electric-quadrupole moment, �Q0, be-
tween the isomer and the ground-state nucleus. We present
a simple geometric model of the nucleus to relate the
observable nuclear parameters to �VC and hence K. We
show that this model is self-consistent by comparing to the
nuclear calculations of Ref. [9].
Once the change in Coulomb energy has been measured,

the change in nuclear energy �EN will be known also,
since they almost cancel for this transition:�EN þ �VC ¼
7:6 eV. This change in nuclear energy can be interpreted in
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terms of variation of the dimensionless ratio mq=�QCD,

where mq is the light quark mass and �QCD is the pole in

the running strong coupling constant. Variation of this ratio
will also be enhanced in the 229Th transition [4]; calcula-
tions may be found in [8,11].

The change in mean-square nuclear radius can be ex-
tracted using the isomeric field shift for an atomic transi-
tion. In principle, any transition in any 229Th ion or the
neutral atom can be used. There are two approaches. The
first is entirely empirical: by combining the measurements
of isomeric shifts and isotopic shifts for the same transi-
tion, one can extract the ratio of �hr2i for the isomer to the
isotopic change in mean-square radius. The second ap-
proach does not require the additional measurement of
isotope shift, but it does require high-precision atomic
calculations.

To extract the change in nuclear quadrupole moment, the
hyperfine structure may be used. The hyperfine-structure
constant B, which can be determined experimentally, is
proportional to the quadrupole moment Q. Therefore one
must measure B for both the ground state and isomeric
229Th. The value of Q for the ground state is known to
within 20%; better accuracy can be obtained using the
calculations presented here.

The radiative lifetime of the metastable 229mTh nucleus
is estimated to be a few hours [2]; however, this may be
reduced if the energy of the excited state exceeds the
ionization potential since an electron autoionization chan-
nel may open. The successive ionization energies of tho-
rium ions are [12] 6.3 eV (Th I), 11.9 eV (Th II), 20.0 eV
(Th III), 28.8 eV (Th IV). Therefore, the atomic experi-
ments are likely to be easier for ionized thorium since the
ionization energies exceed the excitation energy. In fact,
Th IV may be the best choice since it is alkali-like and is
amenable to laser cooling and trapping [3]. This ion has the
additional advantage that calculations are likely to be more
accurate, although we stress that we can obtain reasonable
accuracy with any ion that experimentalists may find
convenient.

We use a simple geometric model to relate the Coulomb
energy of a nucleus to the experimentally observable
mean-square charge radius and intrinsic electric-
quadrupole moment, defined as

hr2i ¼
Z

r2�ðrÞd3r; (2)

Q0 ¼
Z

r2½3cos2ð�Þ � 1��ðrÞd3r; (3)

where �ðrÞ is the electric charge density normalized to
unity. The intrinsic quadrupole moment is related to the
laboratory quadrupole moment of the ground rotational
mode by (see, e.g., [13])

Qlab ¼ ZQ0

Ið2I� 1Þ
ðI þ 1Þð2I þ 3Þ : (4)

We wish to express the Coulomb energy in terms of
these measurable quantities. Assume that both the ground-
state nucleus and the lowest-energy isomer are uniform,
hard-edged, prolate ellipsoids. Using formulas presented in
[14] we find

VC ¼
�
3

5

�
3=2 ðZeÞ2

hr2i1=2
�
1þ 3

40

Q2
0

hr2i2 �
1

56

Q3
0

hr2i3 þ . . .

�
: (5)

With this equation we can extract �VC if we know �hr2i
and�Q0 between the

229Th isomers. Note that VC and�VC

are vastly more sensitive to changes in hr2i than Q0.
To estimate the effect of skin thickness, we use a spheri-

cal Fermi distribution model �ðrÞ ¼ �0ð1þ exp½ðr�
CÞ=z�Þ�1. The Coulomb energy is

VC ¼
�
3

5

�
3=2 ðZeÞ2

hr2i1=2
�
1þ 8:379

z3

hr2i3=2 þ . . .

�
; (6)

and one sees that VC is not sensitive to the skin thickness
parameter z.
With the current data for 229Th, rrms ¼ 5:6807�

0:0509 fm [15] and Qlab ¼ 4:3� 0:9 eb [16], we obtain
Q0 ¼ 13:4 and Coulomb energy VC ¼ 967 MeV. We es-

TABLE I. The values of rrms, Q0, �rrms, �Q0, and VC are
reproduced from Ref. [9] and used to calculate the value of �VC

shown in the last line using our simple geometrical model. SkM�
and SIII refer to two different energy functionals, while HF and
HFB refer to Hartree-Fock and Hartree-Fock-Bogoliubov (the
latter includes pairing correlations); for details see Ref. [9].

SkM� SIII

HF HFB HF HFB

rrms (fm)a 5.7180 5.7078 5.7817 5.7769

Q0 (fm2)a 9.5461 9.3717 9.3542 9.1643

�rrms (fm)a �0:0038 0.0039 0.0000 �0:0005
�Q0 (fm2)a �0:1824 0.2756 �0:0339 �0:0495
VC (MeV)b 924 925 912 912

�VC (MeV)b 0.4510 �0:3070 �0:0980 0.0010

�VC (MeV) 0.4190 �0:3270 �0:0360 0.0290

aFrom Ref. [9], Table II.
bFrom Ref. [9], Table I.

TABLE II. Calculated energies and field-shift constants of
transitions in Th IV. The last column shows expected ‘‘order
of magnitude’’ isomeric shifts in 229Th, assuming j�rrmsj ¼
0:004 fm; however, the actual shift could differ by an order of
magnitude. All transitions are to the 5f5=2 ground state.

! (cm�1)

Level Experimental Calculated F (GHz=fm2) j��mj(GHz)
5f7=2 4325 4899 2(2) 0.09

6d3=2 9193 11 721 33(8) 1.40

6d5=2 14 486 17 534 35(8) 1.50

7s1=2 23 131 24 740 146(4) 6.30

7p1=2 60 239 63 051 57(3) 2.50

7p3=2 73 056 76 319 49(2) 2.10
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timate z ¼ 0:5 fm. In this case the change in Coulomb
energy can be expressed

�VC

ðMeVÞ ¼ �506
�hr2i
hr2i þ 23

�Q0

Q0

þ 17
�z

z
(7)

from which the sensitivity of the transition to � variation is
easily deduced. Note that the contribution of �z is small.

As a consistency check, we have recalculated�VC using
the values of rrms, �rrms, Q0, and �Q0 calculated in
Ref. [9]; this is shown in Table I. That we are able to
reproduce the results of Ref. [9] shows the validity of the
geometrical model. The differences seen in the SIII entries
of Table I (last two columns) are probably due to lack of
numerical precision. If measurements of �rrms and �Q0

are made accurately, the model should suffice even when
the measurable nuclear parameters are small.

Mean-square radius.—We have shown that �hr2i is the
most important quantity for determining �VC and hence
sensitivity to � variation. �hr2i can be extracted from the
isomeric shift of any atomic transition, obtained by com-
paring 229Th and 229mTh. This is similar to the usual isotope
shift.
The shift in energy of any transition in an isotope with

mass number A0 with respect to an isotope with mass
number A can be expressed as

��A0;A ¼ ðkNMS þ kSMSÞ
�
1

A0 �
1

A

�
þ F�hr2iA0;A: (8)

Here the first term is the ‘‘mass shift’’ due to the finite mass
of the nucleus and the second term is the ‘‘volume’’ or
‘‘field’’ shift due to the finite size of the nuclear charge
distribution (see, e.g., [17]). In the case of the isomeric
shift that we are interested in, the mass shift vanishes since
isomers have equal mass. Thus in order to extract �hr2i
from a measurement of isomeric shift ��m for an atomic
transition, we need simply divide by the field-shift constant
F:

��m ¼ F�hr2i: (9)

These may be calculated or extracted from known isotope
shifts.
In Tables II, III, and IV, we present calculated field-shift

constants for transitions in several ions of Th. In Table II
we have included an estimated size of the isomeric shift,
��m, assuming that �rrms ¼ 0:004 fm, which is the mag-
nitude of the largest shifts in [9] (from the SkM� nuclear
energy functionals).
We calculate the field-shift constants F using methods

developed in previous works [17]. Briefly, we perform an
energy calculation several times, modifying the nuclear
radius in our codes. F is extracted from the gradient: F ¼
dE=dhr2i at rrms ¼ 5:6807 fm. The energy calculations are
performed using a combination of second-order many-
body perturbation theory and configuration interaction

TABLE III. Calculated energies, ! (cm�1), field-shift con-
stants, F (GHz=fm2), and isotope shifts, ��232;230

(10�3 cm�1), of some transitions in Th III. All transitions are
to the 5f6d 3H0

4 ground state. Note that, while we believe the

6d2 3F3, 6d2 3F4, and 6d7s 3D3 transitions are accurate, the

others are estimates only.

Level ! (cm�1) ��232;230

Term J Experimental Calculated F Calculateda

6d2 3F 3 4056 4023 24 165

6d2 3F 4 6538 6795 22 147

6d7s 3D 3 9954 9204 118 804

6d2 1G 4 10 543 11 051 8 56

5f2 3H 4 15 149 13 358 �11 �77
5f2 3H 5 17 887 16 068 �20 �136
5f2 3F 3 20 840 19 080 �18 �122
5f2 3F 4 21 784 20 366 �15 �101
5f2 1G 4 25 972 25 269 10 �66
5f7p ( 52 ,

1
2 ) 3 33 562 33 402 13 92

5f7p ( 72 ,
1
2 ) 3 38 432 38 617 15 101

a�hr2i ¼ 0:205 fm2, from Ref. [15]

TABLE IV. Calculated energies, ! (cm�1), field-shift constants, F (GHz=fm2), and isotope shifts, ��232;230 (10�3 cm�1), of some
transitions in Th II. All transitions are to the 6d27s J ¼ 3=2 ground state.

Level ! (cm�1) ��232;230

Configuration J Experimental Calculated F Experimental Calculateda Calculatedb

5f7s2 2F0 5=2 4490 4856 4 54 47 43

5f6d7s 4F0 3=2 6691 7487 �53 �362 �401 �362
5f6d7s 4F0 5=2 7331 8325 �53 �365 �405 �365
5f6d7s 4G0 5=2 9585 10 045 �55 �375 �406 �366
5f6d7s 4H0 5=2 10 673 12 168 �53 �361 �406 �367
5f6d7s 2D0 3=2 11 576 13 054 �54 �367 �408 �368
5f6d7s 4D0 1=2 11 725 12 897 �67 �456 �460 �415
5f6d7s 2F0 5=2 12 472 14 564 �58 �399 �463 �418
5f6d7s 4F0 3=2 12 902 14 233 �58 �395 �444 �400
5f6d7s 4G0 1=2 14 102 15 853 �79 �539 �610 �550

a�hr2i ¼ 0:205 fm2, from Ref. [15]
b�hr2i ¼ 0:185 fm2, best fit value.
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(CIþMBPT, Refs. [18,19]) which takes into account
dominating relativistic and correlation effects. In the
single-valence-electron case, Th IV, the technique reduces
to the correlation-potential method [20] in which
Brueckner orbitals are calculated for states of the valence
electron. The accuracy of these calculations is high, as
illustrated in Tables II, III, and IV.

For Th II there are experimental isotope shifts available
[21], and we compare them with our calculations in
Table IV. The second-last column is a calculation with
�hr2i232;230 ¼ 0:205ð30Þ fm2 [15], while the last column
gives values of the isotope shift calculated with
�hr2i232;230 ¼ 0:185; this is the value that gives the best
agreement between our calculated isotope shifts and the
experimental data. Note that we have ignored the mass
shift; it is negligible in such a heavy element.

The field-shift constant is generally larger for transitions
involving a change in the s-wave configuration, e.g.,
5f5=2 ! 7s1=2 transition in Th IV and the 5f6d 3Ho

4 !
6d7s 3D3 transition in Th III. Measurement of the isomeric

shift may be easier for these cases. However, if there are
good reasons to use transitions with smaller shifts (e.g., the
higher-energy transitions in Th III), then we recommend
the experimentalists contact us for more precise values of
the constants. Again we stress that these constants may be
extracted from measured isotope shifts with accuracy only
limited by knowledge of the isotopic change in mean-

square radius, �hr2iA0;A.
Electric quadrupole.—Although we have shown (7) that

the change in Coulomb energy of the 7.6 eV transition in
the 229Th nucleus is far more sensitive to hr2i thanQ0,�Q0

could still be important if �hr2i is found to be very small.
Fortunately �Q0 can be extracted from measurements of
the hyperfine structure of the isomers by using (4) and
noting that Qlab is proportional to the electric-quadrupole
hyperfine-structure constants B. Since the electric-
quadrupole moment of the ground-state 229Th nucleus is
known to about 20% accuracy [Qlab ¼ 4:3ð9Þ eb [16]],
�Q0 can be extracted to this level of accuracy, and no
atomic calculations are needed for interpretation of the
results.

If better than 20% accuracy is required, the values of
Qlab can be found by comparison of the calculated and

measured B. Calculations with this level of accuracy for
many-valence-electron ions are difficult, but can be per-
formed if required. In this Letter we present calculations of
B for the single-valence-electron ion Th IV. The constant B
for a particular valence state v is found as a matrix element

Bv ¼ Ahc Br
v kF̂þ �Vkc Br

v i; (10)

where A is a numerical constant, c Br
v is the Brueckner

orbital for the valence state v, F̂ is the operator of the
nuclear electric-quadrupole moment, and �V is the correc-
tion to the atomic self-consistent potential due to the effect
of nuclear quadrupole electric field on atomic electrons.
The same Brueckner orbitals are used as in the previous
section. The results are presented in Table V: accuracy is
expected to be at the level of a few percent.
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TABLE V. Calculated electric-quadrupole hyperfine-structure
constants B for some low energy states of Th IV. In the last
column, the nuclear electric-quadrupole momentQ is taken to be
4.3 b.

Level B (MHz)

5f5=2 740Q 3180

5f7=2 860Q 3700

6d3=2 690Q 2970

6d5=2 860Q 3700

7p3=2 1810Q 7790
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