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We consider an overdamped nanoparticle in a driven double-well potential as a generic model of an

erasable 1-bit memory. We study in detail the statistics of the heat dissipated during an erasure process and

show that full erasure may be achieved by dissipating less heat than the Landauer bound. We quantify the

occurrence of such events and propose a single-particle experiment to verify our predictions. Our results

show that Landauer’s principle has to be generalized at the nanoscale to accommodate heat fluctuations.
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Maxwell’s demon is a salient figure of thermodynamics
[1]. Introduced in 1867 to illustrate the statistical nature of
the second law, the demon is an intelligent microscopic
being able to monitor individual molecules contained in
two neighboring chambers initially at the same tempera-
ture. By opening and closing a small hole in the separating
wall, the demon collects the faster (‘‘hot’’) molecules in
one of the chambers and the slower (‘‘cold’’) ones in the
other, thus creating a temperature difference. The demon is
therefore able to decrease the entropy of the system with-
out performing any work, in apparent violation of the
second law of thermodynamics. The paradox was eventu-
ally resolved by Bennett [2], who noted that during a full
thermodynamic cycle, the memory of the demon, used to
record the coordinates of each molecule, has to be reset to
its initial state. According to Landauer’s principle [3],
memory erasure necessarily requires dissipation of en-
tropy: the cost of erasing 1 bit of information is at least
�SLandauer ¼ k ln2, where k is the Boltzmann constant [3–
6]. The entropy cost to discard the information obtained
about each gas molecule appears to always exceed the
entropy reduction achieved by the demon. Maxwell’s de-
mon is hence exorcised by Landauer’s erasure principle.

The second law stipulates that irreversible entropy pro-
duction is positive in macroscopic systems. Thermal fluc-
tuations are usually exceedingly small at these large scales
and are therefore discarded. By contrast, fluctuations be-
come predominant in microscopic systems and it has lately
been recognized that the second law has to be generalized
to properly take positive as well as negative entropy fluc-
tuations into account [7]. This generalization takes the
form of a fluctuation theorem, Pð��Þ ¼ Pð�Þ expð��Þ,
for the probability distribution of the entropy production
Pð�Þ [8,9]. Processes with negative entropy production can
hence occur in small systems with small �, while they are
exponentially suppressed in large systems with large �.
The fluctuation theorem has recently been confirmed ex-
perimentally using a colloidal particle in a modulated
optical trap [10] and a driven torsion pendulum [11].

Motivated by the recent development of nanotechnolog-
ical memory devices [12–14], we investigate the impact of

fluctuations on memory erasure in small systems. By con-
sidering a generic system, we show that full erasure may be
achieved in nanosystems with an entropy dissipation less
than the Landauer limit. We express the Landauer bound in
terms of the free energy difference of the erasure process
and quantify the probability of having a dissipated entropy
below that value. We moreover discuss an experimental
setup where our findings can be tested using currently
available technology. To our knowledge, Landauer’s prin-
ciple has never been verified experimentally, despite its
fundamental importance as a bridge between information
theory and physics. One of the main difficulties is that, in
order to access the dissipated entropy, one needs to be able,
like Maxwell’s demon, to follow individual particles.
Because of recent progress of single molecule experiments,
this is now possible [15,16].
Model.—Following the original work of Landauer, we

consider an overdamped Brownian particle in a one-
dimensional double-well potential as a generic model of
a 1-bit memory [3]. The state of the memory is assigned the
value zero if the particle is in the left (x < 0) well and one
in the right (x > 0) well. The memory is said to be erased
when its state is reset to one (or alternatively zero) irre-
spective of its initial state. The potential barrier is assumed
to be much larger than the thermal energy so that the
memory can be considered stable in the absence of any
perturbation. We describe the dynamics of the Brownian
particle using the Langevin equation,

�
dx

dt
¼ �@V

@x
þ AfðtÞ þ �ðtÞ; (1)

where � is the friction coefficient and �ðtÞ a delta corre-
lated Gaussian noise force with h�ðtÞi ¼ 0 and
h�ðtÞ�ðt0Þi ¼ 2D�ðt� t0Þ. The diffusion coefficient is
given by D ¼ �kT. The double-well potential VðxÞ is of
the standard form, VðxÞ ¼ �agðtÞx2=2þ bx4=4, with a
barrier height that can be controlled by the dimensionless
function gðtÞ. The Brownian particle is additionally sub-
jected to a driving force AfðtÞ with a driving amplitude A.
In order to simplify the analysis of Eq. (1), it is convenient
to introduce dimensionless variables defined as �x ¼ x=xm

PRL 102, 210601 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
29 MAY 2009

0031-9007=09=102(21)=210601(4) 210601-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.210601


and �t ¼ at=�, where xm ¼ ffiffiffiffiffiffiffiffiffi

a=b
p

is the position of the
(positive) minimum of the potential [17]. The dimension-
less potential is then �Vð �xÞ ¼ �gð�tÞ �x2=2þ �x4=4 and the
rescaled driving amplitude and diffusion coefficient are,
respectively, given by �A ¼ A=axm and �D ¼ D=�ax2m. In
the following, we will drop the bar signs and consider
dimensionless quantities.

As discussed in detail by Bennett in Ref. [2], the mem-
ory can be reset to one by (i) lowering the barrier height
and (ii) applying an external tilt that brings the nanopar-
ticle into the right well. We here characterize the erasure
protocol with the help of the two functions gðtÞ and fðtÞ
shown in Fig. 1. The function gðtÞ, defined as

gðtÞ ¼
�

1� C sinð!ðt� t0ÞÞ if t 2 ½t0; t0 þ tf�
1 otherwise;

(2)

lowers and raises the potential barrier in a time tf ¼ �=2

specified by the period, � ¼ 2�=!, of the sine function.
The parameter C controls the amplitude of the barrier
lowering. On the other hand, the tilting function fðtÞ has
a sawtooth shape parametrized as

fðtÞ ¼
8

>

<

>

:

ðt� t0Þ=�1 if t 2 ½t0 þ �1�
1� ðt� t0 � �1Þ=�2 if t 2 ½t0 þ �1; t0 þ tf�
0 otherwise:

(3)

The two time constants �1 and �2 verify tf ¼ �1 þ �2 and

are, respectively, the times during which the driving force
Af is ramped up to its maximal value A and then down
again to zero. The values of the parameters in Eqs. (2) and
(3) are chosen in order to minimize the dissipated entropy.
After a full erasure cycle, both gðtÞ and fðtÞ take back their
original values and the double-well potential VðxÞ is re-
stored to its initial shape.

The energetics of the Brownian particle can be intro-
duced by following the prescription of Ref. [18]. The
variation of the total potential energy is defined as �U ¼
Uðxðt0 þ tfÞ; t0 þ tfÞ�Uðxðt0Þ; t0Þ, where Uðx; tÞ ¼
Vðx; tÞ � xAfðtÞ is the sum of the double-well potential
Vðx; tÞ and the driving potential �xAfðtÞ. The work per-
formed on the particle is in turn given by

W ¼
Z t0þtf

t0

dt
@Uðx; tÞ

@t
: (4)

Since the driving force satisfies fðt0 þ tfÞ ¼ fðt0Þ ¼ 0, the

work can be rewritten in terms of the functions gðtÞ and
fðtÞ as W ¼ Rt0þtf

t0 dt _x½AfðtÞ þ ðgðtÞ � 1Þx�. This expres-
sion indicates that particles moving against the total force,
Fðx; tÞ ¼ AfðtÞ þ ðgðtÞ � 1Þx, will generate work, while
particles moving in the same direction will absorb work.
This is the physical origin of work fluctuations in the
present system. According to the first law, the heat dissi-
pated into the bath is the difference between work and total
energy change, Q ¼ W � �U. It is important to note that
the energy change during an erasure cycle vanishes on
average, h�Ui ¼ 0. As a consequence, the mean work
done on the system and the mean dissipated heat are equal,
hWi ¼ hQi. Moreover, the dissipated heat is related to the
dissipated entropy via hQi ¼ T�S for a quasistatic trans-
formation. The Landauer bound for the dissipated heat
then follows as hQiLandauer ¼ kT ln2, or equivalently,
h �QiLandauer ¼ �D ln2 in dimensionless units.
Numerical results.—We have numerically integrated the

overdamped Langevin equation (1) using the Heun method
(Runge-Kutta n ¼ 2) [19] with a Gaussian noise force
generated by means of the Box-Muller method [20]. In
our simulations, the particle is initially placed at position
x ¼ 0 and is then left to equilibrate with the heat bath at
temperature T. After a thermalizing time t0, the memory is
therefore either in state zero or one with probability one-
half. Two examples of an erasing sequence for different
driving amplitudes (see below) are shown in Fig. 2 for an
ensemble of 102 particles. The erasure protocol is applied
at t ¼ t0 for a duration of tf. We observe that in the first

case, all particles end up in the positive potential well. Full
reset of the memory to state one is therefore achieved. On
the contrary, only partial erasure is realized in the second
case, as some Brownian particles remain in the negative
potential well after the end of the erasure process.
Figure 3 shows the erasure rate, defined as the relative

number of particles being in the right potential well at the
end of the erasure protocol, as a function of the driving
amplitude A. The simulations are performed with 105

trajectories and a time slicing �t ¼ �� ð5� 10�5Þ. We
note that full erasure is obtained for driving amplitudes
larger than a threshold value of A0 ’ 0:15. The mean work
hWi and the mean dissipated heat hQi during an erasure
cycle are plotted in the inset: both increase monotonically
with increasing driving amplitude. For the chosen parame-
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FIG. 1 (color online). Time dependence of the two dimension-
less functions gðtÞ and fðtÞ, Eqs. (2) and (3), that govern the
erasure protocol. The function gðtÞ lowers the potential barrier,
whereas fðtÞ induces a tilt that brings the Brownian particle into
the right well (state one of the memory).
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ters, the dimensionless diffusion coefficient is D ¼ 0:02,
corresponding to a Landauer limit of hQiLandauer ¼
D ln2 ¼ 0:014. We stress that the mean dissipated heat
always exceeds the Landauer bound, hQi> hQiLandauer, in
accordance with Landauer’s principle. We have similarly
studied the dependence of the erasure rate on the parameter
C (not shown).

The full probability distributions of work and heat for a
given protocol resulting in complete memory erasure are
depicted in Fig. 4. Three important points are worth dis-
cussing. First, PðWÞ and PðQÞ are broad distributions with
positive and negative fluctuations induced by the thermal

bath. We note furthermore that the heat distribution is
markedly broader than the work distribution. The differ-
ence in width of the two distributions can be understood by
noticing that, following the definition of Q, its variance is
larger than the sum of the variances of work and energy,
�2

Q � �2
W þ �2

�U > �2
W . The second observation is that

both distributions have a bimodal structure. The left peak
arises from half the particles being initially located in the
right potential well, whereas the right peak stems from
particles being moved from the left to the right potential
well during the erasure process. The inset shows the condi-
tional heat distribution pertaining to these particles. Third,
and most importantly, we note that a significant fraction of
trajectories lead to full memory erasure while dissipating
less heat than the Landauer limit, Q< hQiLandauer. From
the conditional heat distribution shown in the inset, we find
that 7.4% of all trajectories starting in the left potential well
at time t0 yield a dissipated heat below hQiLandauer. Full
memory erasure in small systems can hence be obtained
below the Landauer limit due to thermal fluctuations.
Analytical considerations.—We next derive the

Landauer bound for a nanoparticle in the double-well
potential. Our starting point is the Jarzynski equality [21],

he��Wi ¼ e���F ¼ Z1

Z0

; (5)

which relates the average exponentiated work done on the
Brownian particle to the free energy difference �F ¼
�kT lnZ1=Z0. Here Z0 and Z1 are the initial and final
partition functions of the system. The Jarzynski equality
is valid for arbitrary changes of the potential Uðx; tÞ and
has been successfully verified in biomolecule pulling ex-
periments [22]. Before erasure, particles are thermally
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FIG. 3 (color online). (a) Memory erasure rate, defined as the
relative number of particles ending in the right potential well, as
a function of the amplitude of the tilting force AfðtÞ; full
memory erasure is attained for A > A0 ’ 0:15. (b) Mean work
hWi and mean dissipated heat hQi versus the tilting amplitude A
for parameters ! ¼ 0:01, C ¼ 1:2, D ¼ 0:02, �0 ¼ 0:05tf, and

�1 ¼ 0:45tf.
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FIG. 4 (color online). (a) Distribution of work and heat for a
full erasure process. (b) Conditional heat distribution for parti-
cles initially in the left well. The existence of fluctuations below
the Landauer limit is here clearly visible. Parameters are ! ¼
0:01, A ¼ 0:2, C ¼ 1:0ðaÞ, 1:2ðbÞ, and D ¼ 0:02. The average
work and heat is given by hWi ¼ hQi ¼ 0:036, and the Landauer
bound is hQiLandauer ¼ D ln2 ¼ 0:014.

FIG. 2. Stochastic evolution of an ensemble of 100 trajectories
during the erasure process. The state of the memory is zero or
one with probability one-half at initial time t0. Erasure of the
memory to state one is complete in case (a), while only partial in
case (b). We have here used ! ¼ 0:01 and D ¼ 0:02.
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distributed over the entire double-well potential and
the initial partition function is thus Z0 ¼
R1
�1 dx exp½��VðxÞ�. After successful erasure, all parti-

cles are thermalized in the right potential well and Z1 ¼
R1
0 dx exp½��VðxÞ� ¼ Z0=2. As a result, the ratio of the

partition functions is simply Z1=Z0 ¼ 1=2 and �F ¼
kT ln2. By using Jensen’s inequality, hexpð��WÞi �
expð��hWiÞ, we immediately obtain, hWi ¼ hQi �
kT ln2. The Landauer bound is thus given by the free
energy difference of the erasure process and is only at-
tained in the quasistatic limit when hWi ¼ hQi ¼ �F. By
further generalizing an argument presented in [23], the
probability to observe a value of dissipated heat below
the Landauer limit, hQiLandauer � q, with q > 0 can be
estimated to be

Prob ½Q< hQiLandauer � q� � expð��qÞ: (6)

Small fluctuations below the Landauer limit are hence
possible. However, large fluctuations, q � kT, are expo-
nentially suppressed, in agreement with the macroscopic
formulation of Landauer’s principle. We can therefore
conclude that at the nanoscale, where fluctuations cannot
simply be neglected, Landauer’s principle has to be gener-
alized in a way similar to the second law.

Experimental implementation.—The control of single
nanoparticles in arbitrary two-dimensional force fields
has been demonstrated in Refs. [15,16]. In these experi-
ments, fluorescence microscopy is combined with real-
time feedback techniques to manipulate nanoscale objects
(from 50 to 200 nm) in solution via a position-dependent
electrophoretic force. The force may be varied with high
precision over nanometer distances and millisecond times.
The trajectory of the particle is monitored with a high-
sensitivity CCD camera. The Brownian motion of a
200 nm fluorescent polystyrene bead in a static double-
well potential has been investigated in Ref. [16] and the
measured hopping rates between the two wells have been
successfully compared with Kramers theory. We propose
to study memory erasure in nanosystems by extending the
former experiment to a driven double-well potential ac-
cording the erasure protocol discussed above. The workW
done on the particle as well as the dissipated heat Q can be
determined directly from the measured particle trajectory
via Eq. (4). By assuming a spacial diffusion coefficient
Dx ¼ 10 �m2 s�1, a measuring time � ¼ 60 s, and a tem-
perature T ¼ 300 K, we obtain the following realistic
values for the parameters of the Langevin equation (1):
�¼ kT=Dx ’ 4:10�10 kgs�1, a ¼ � ��=� ’ 4:10�9 kg s�2,
and b ¼ �Da2=kT ’ 40 kgm�2 s�2 with a dimensionless
execution time �� ¼ 600 and diffusion coefficient �D ¼
10�2, as in our numerical simulations. The minima of the

potential are then separated by �x ¼ 2xm ¼ 2
ffiffiffiffiffiffiffiffiffi

a=b
p ’

20 �m. These values are all compatible with the experi-
ments already performed in Refs. [15,16].

Conclusion.—We have considered an overdamped
Brownian particle in a double-well potential as a generic
model of a 1-bit memory. We have investigated the proba-
bility distribution of the work and the heat dissipated
during an erasure process and demonstrated that full era-
sure may be reached by dissipating an amount of heat
below the Landauer limit. We have shown that the occur-
rence of such events is exponentially suppressed, and
therefore not observable, in macroscopic systems. They
play, however, an essential role in nanosystems and we
have discussed a single-particle experiment where our
predictions can be tested. Our main conclusion is that for
small systems in general—and Maxwell’s demon in par-
ticular—the macroscopic formulation of Landauer’s prin-
ciple does not hold, but has to be generalized to include
heat fluctuations.
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