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We present a theoretical analysis of a novel cavity electromechanical system where a mechanical

resonator directly modulates the damping rate � of a driven electromagnetic cavity. We show that via a

destructive interference of quantum noise, the driven cavity can effectively act like a zero-temperature

bath irrespective of the ratio �=!M, where !M is the mechanical frequency. This scheme thus allows one

to cool the mechanical resonator to its ground state without requiring the cavity to be in the so-called good

cavity limit � � !M. The system described here could be implemented directly using setups similar to

those used in recent experiments in cavity electromechanics.
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Introduction.—Much of the rapid progress in fabricating
and controlling nanomechanical devices has been fueled
by numerous promising technological applications.
However, progress has also been motivated by the realiza-
tion that such systems are ideally poised to allow the
exploration of several fundamental quantum mechanical
effects. Various studies have addressed such issues as en-
tanglement, quantum-limited measurement, and Fock state
detection in systems containing nanoscale mechanical res-
onators [1–4]. The issue of quantum backaction has also
received considerable attention in these systems [5,6].
Understanding the backaction properties of a detector in
a quantum electromechanical or optomechanical system is
necessary if one wishes to do quantum-limited position
detection. Further, this backaction can in some cases be
exploited to achieve significant nonequilibrium cooling of
the mechanical resonator. This is of particular importance,
since a prerequisite to seeing truly quantum behavior in
these systems is the ability to cool the mechanical resona-
tor to near its ground state.

A particularly effective backaction cooling scheme is
‘‘cavity cooling’’ [7–10]. Here, a mechanical resonator is
dispersively coupled to a driven electromagnetic cavity
(i.e., the cavity’s frequency depends on the mechanical dis-
placement x). By monitoring the frequency of the cavity,
one can make a sensitive measurement of x. In addition, the
cavity photon number necessarily acts as a noisy force on
the mechanics; for a suitably chosen cavity drive, this force
can be used to effectively cool the mechanical resonator.
This approach has been used in recent experiments, both
with optical cavities coupled to mechanical resonators
[11,12], as well as in systems using microwave cavities
[13,14]. Theoretically, it has been shown that such schemes
can allow ground-state cooling of the mechanical resonator
[9,10]. Similar physics even occurs in seemingly very
different systems, e.g., a superconducting single-electron
transistor coupled to a mechanical resonator [15,16].

In this Letter, we present a theoretical analysis of a
generic electromechanical (or optomechanical) system

which is the dual of the dispersive coupling discussed
above. We again consider a driven cavity coupled to a
mechanical resonator: now, however, the mechanical dis-
placement x does not change the cavity frequency, but
rather changes its damping rate �. In the ideal case, this
damping will be dominated by the coupling of the cavity to
the port used to drive it. As we will discuss, such a
dissipative coupling arises naturally in systems where a
microwave cavity is coupled to a nanomechanical resona-
tor [17]; it could also be realized in an optical cavity
containing a moveable ‘‘mebrane in the middle’’ [12,18].
We show that for such a dissipative cavity-mechanical
resonator coupling, interference effects are important in
determining the quantum backaction effects on the me-
chanical system; this is not the case for a purely dispersive
coupling. In particular, we show that one can use destruc-
tive interference to allow the cavity to act as an effective
zero-temperature bath, irrespective of the ratio of the me-
chanical frequency !M to the cavity linewidth �; as such,
ground-state cooling is possible without requiring the
‘‘good cavity’’ limit !M � �. This is in sharp contrast to
the case of a dispersive coupling, where ground-state cool-
ing is only possible if !M � �. From a practical perspec-
tive, being able to deviate from the good cavity limit is
advantageous, as it allows one to use small drive detunings
and hence achieve much larger effective cavity-mechanical
resonator couplings. We show that this destructive inter-
ference effect persists in the case where one has both a
dissipative and dispersive coupling; we also show that a
dissipative coupling can allow for a quantum-limited po-
sition measurement.
Model.—We consider a mechanical oscillator (fre-

quency !M, displacement x) whose motion weakly mod-
ulates the damping rate � and resonant frequency !R of a
driven electromagnetic cavity. For small displacements,
both !R and � will have a linear dependence on x, and
we can describe the system via the Hamiltonian (@ ¼ 1):

Ĥ¼!Râ
yâþ!Mĉ

yĉþP
q!qb̂

y
q b̂qþ Ĥdampþ Ĥintþ Ĥ�.

The first two terms describe the cavity and mechanical
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Hamiltonians, while H� describes the intrinsic mechanical

damping by an equilibrium bath at temperature Teq. The

third term in Ĥ describes the bosonic bath responsible for
the dissipation and driving of the cavity. Working in the
usual Markovian limit where � � !R, and where the bath
density of states � can be treated as energy independent
over relevant frequencies, the cavity-bath interaction takes
the form [19,20]

Ĥ damp ¼ �i

ffiffiffiffiffiffiffiffiffiffi
�

2��

s X
q

ðâyb̂q � b̂yq âÞ: (1)

The cavity-mechanical coupling is then described by

Ĥ int ¼ ðx̂=xzptÞð12 ~BĤdamp þ ~A�âyâÞ: (2)

The dimensionless coupling strengths ~A, ~B above are given

by ~B� ¼ ðd�=dxÞxzpt, ~A� ¼ ðd!R=dxÞxzpt, where xzpt is

the zero-point motion amplitude of the mechanical
oscillator.

To proceed, we linearize the full quantum dynamics
about the solutions of the classical equations of motion
for the uncoupled cavity, making use of the input-output
formalism of quantum optics [19,20]. Working in frame

rotating at the drive frequency, and writing â ¼ �aþ d̂
(where �a ¼ hâi), the linearized Heisenberg equations of
motion take the form

_̂d¼
�
i���

2

�
d̂� ffiffiffiffi

�
p

�̂��

� ~B
2

�
�aþ

�binffiffiffiffi
�

p
�
þ i ~A �a

�
ðĉþ ĉyÞ;

(3)

_̂c ¼ �
�
i!M þ �

2

�
ĉ� ffiffiffiffi

�
p

�̂þ ixzptF̂: (4)

Here �bin is the amplitude of the coherent cavity drive, � ¼
!drive �!R is the detuning of the cavity drive, �̂ describes
vacuum noise entering the cavity from the drive port, and �̂
describes thermal noise associated with the mechanical

damping � [19,20]. The backaction force operator F̂ ¼
�ðd=dxÞĤint in Eq. (4) takes the form

F̂ ¼ �
� ~A�
xzpt

�a�d̂� i ~B
ffiffiffiffi
�

p
2xzpt

ð �a��̂� �b�ind̂Þ
�
þ H:c: (5)

Quantum noise.—For a sufficiently weak optomechan-
ical coupling, linear-response theory applies, and the un-

perturbed quantum noise spectrum of F̂ (i.e., calculated at
~A ¼ ~B ¼ 0) determines both the backaction damping and
heating of the mechanical resonator by the driven cav-

ity [15,20]. The relevant spectrum is SFFð!Þ ¼R
d�ei!�hF̂ð�ÞF̂ð0Þi0. Recall that SFFð!MÞ is proportional

to the Fermi’s golden rule rate for the absorption of a
mechanical quantum by the driven cavity, while
SFFð�!MÞ is proportional to the corresponding emission
rate. The effective temperature associated with the back-
action noise as seen by the mechanical oscillator is then
given by kBTeff � !Mðlog½SFFð!MÞ=SFFð�!MÞ�Þ�1,
while the backaction damping is given by �BA ¼

x2zpt½SFFð!MÞ � SFFð�!MÞ�. These linear-response re-

sults presume the total mechanical damping rate to be
small enough that the resonator is only sensitive to noise
at ! ¼ �!M; as we will see, deviations will occur when
the effective optomechanical coupling becomes large
enough to make �BA comparable to !M.
One finds from Eqs. (3) and (4) that the uncoupled cav-

ity’s backaction force noise spectrum SFFð!Þ is given by

SFFð!Þ ¼ �

� ~Bj �aj
2xzpt

�
2 ½!þ 2�� 2 ~A

~B
��2

ð!þ �Þ2 þ �2=4
: (6)

In the limit ~B ! 0 of a purely dispersive coupling, Eq. (6)
reduces to a simple Lorentzian [9,10]. This form has a
simple interpretation: it corresponds to the Lorentzian
density of final states relevant to a Raman process where
an incident drive photon gains an energy @!while attempt-
ing to enter the cavity. The optimal backaction cooling
discussed in Refs. [9,10] requires � ¼ �!M and � �
!M. For these parameters, the drive photons are initially
far from being on resonance with the cavity. The absorp-
tion of energy from the oscillator is resonantly enhanced,
as it moves an incident drive photon onto the cavity reso-
nance. In contrast, emission of energy to the oscillator is
greatly suppressed, as the drive photon is moved even
further from resonance. Thus, the ~B ¼ 0 form of SFFð!Þ
and the resulting cooling are simply explained as a density
of states effect.
In the more general case where the dissipative optome-

chanical coupling ~B is also nonzero, SFFð!Þ is not a simple
Lorentzian; as such, the backaction physics cannot be
interpreted solely as a density of states effect. In general,
SFFð!Þ has an asymmetric Fano line shape (see Fig. 1),
with the cavity emission noise SFFð�!MÞ vanishing when-
ever the detuning � ¼ !M=2þ ð ~A= ~BÞ� � �opt. Thus, for

this optimal detuning, one finds that the cavity acts as an
effective zero-temperature bath, irrespective of the ratio
�=!M. For � ¼ �opt, one has

�BA;opt ¼ ~B2j �aj2� !2
M

½3!M=2þ ð ~A= ~BÞ��2 þ �2=4
: (7)

For � ¼ �opt, the weak-coupling, quantum noise ap-

proach yields the equilibrium number of quanta in the
oscillator to be nosc ¼ �neq=ð�BA;opt þ �Þ, where � is the

intrinsic damping rate of the oscillator, and neq is the Bose-

Einstein factor associated with the bath temperature Teq.

One can thus cool to the ground state for a sufficiently large
coupling and/or cavity drive. This possibility of ground-
state cooling for an arbitrary �=!M ratio is a main result of
this Letter. Note that the optimal detuning �opt is greater

than 0: ground-state cooling is possible even though the
drive photons would seemingly need to ‘‘burn off’’ energy
to enter the cavity. This is in stark contrast to the purely
dispersive case where a positive detuning leads to heating
and a negative-damping instability. Note finally that there
is also an ‘‘optical spring’’ effect associated with the back-
action; it can be obtained directly from SFFð!Þ [9].
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Fano line shapes arise generically as a result of interfer-
ence between resonant and nonresonant processes; the
situation is no different here. In the usual ~B ¼ 0 case, the
only source of backaction force noise is the number fluc-
tuations of the cavity field â. However, when ~B � 0, the
mechanical oscillator mediates the coupling between the
cavity and the cavity’s dissipative bath. As a result, it is
subject to two sources of noise, corresponding to the two
terms in Eq. (5): the shot noise associated with the driving
of the cavity, as well as the fluctuations of â. The first of
these noise processes is white, whereas the second is not: it
is simply the shot noise incident on the cavity filtered by
the !-dependent cavity susceptibility. The interference
between these two noises yields a Fano line shape for
SFFð!Þ, and the destructive interference at� ¼ �opt which

causes Teff ¼ 0. Note that Fano interference in electrome-
chanical systems has recently been discussed in Ref. [21],
albeit in a very different context.

Full solution.—To address whether the destructive noise
interference effect persists beyond the simplest weak-
coupling regime, we now examine the full solution of

Eqs. (3) and (4); for simplicity, we focus on ~A ¼ 0. One
finds for the oscillator spectrum Scc¼

R
dthĉyðtÞĉð0Þie�i!t,

Sccð!Þ ¼ j~�Mð�!Þj2½	eqð�!Þ þ SFFð!Þ�; (8)

where

~�Mð!Þ ¼ �Mð!Þ=½1þ i�Mð!Þ�ð!Þ�; (9)

�ð!Þ ¼ �i ~B2j �aj2��
Mð�!Þ�Rð!Þ��

Rð�!Þ
�!M�½�2 � 3

4�
2 þ i!��; (10)

	eqð!Þ¼�

�
neq

�
1þRe�ð!Þ

!M

�
þ
���������ð!Þ
2!M

��������
2ð1þ2neqÞ

�
:

(11)

Here, we denote the bare mechanical and cavity sus-
ceptibilities by �Mð!Þ ¼ ½�ið!�!MÞ þ �=2��1 and
�Rð!Þ ¼ ½�ið!þ �Þ þ �=2��1. Equation (8) has a sim-
ple interpretation: the oscillator responds with a modified
susceptibility ~�M to two independent fluctuating forces,
corresponding to the two terms in the equation. The first,
described by 	eq, is the fluctuating thermal force associ-

ated with the intrinsic oscillator damping �. The second is
the backaction from the driven cavity. We see that its form
is not affected by the coupling strength: the same spectral

density SFFð!Þ (evaluated at ~A ¼ 0) found earlier in the
weak-coupling regime [c.f. Eq. (6)] appears here. Thus, the
quantum noise interference discussed above continues to
play a role even for moderate coupling strengths. A strong
cavity-mechanical resonator coupling will nonetheless
modify the physics, as the destructive interference occur-
ring when � ¼ �opt only occurs at the single frequency

!M. For a sufficiently strong coupling, the oscillator’s total
damping will become large enough that the oscillator will
be sensitive to noise at frequencies away from !M, fre-
quencies where the destructive interference is not com-
plete. As a result, the cavity will no longer appear to the
oscillator as an effective zero-temperature bath. Note that

when ~A � 0, the spectrum Sccð!Þ still has the general form
given by Eqs. (8), (9), and (11): one now simply uses the
full form of SFFð!Þ, as well as a self-energy that contains

extra terms / ~A.
To see whether this resonance-broadening effect as well

as other strong-coupling effects preclude ground-state
cooling at the optimal detuning �¼�opt, we calculate the

average number of oscillator quanta nosc directly by inte-
grating Sccð!Þ in Eq. (8). In Fig. 2 we show the expected
cooling for realistic parameter values, as a function of the
cavity drive strength. Strong-coupling effects lead to an
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FIG. 2 (color online). (a) Number of mechanical quanta nosc
versus coupling strength ~Bj �aj, for ~A ¼ 0, neq ¼ 50, �=!M ¼ 1

and for an optimal detuning � ¼ !M=2; the mechanical damp-
ing � is as marked. Dashed curves are results from the linear-
response, quantum noise approach, whereas solid curves are
obtained from the full solutions of the equations of motion.
(b) Schematic of a cavity (modeled as an LC resonator) coupled
to a transmission line (impedance Z0) via an x-dependent ca-
pacitance C1ðxÞ.
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FIG. 1 (color online). (a) Backaction force noise spectral den-
sity for � ¼ �=2, for different ratios of the dispersive to dis-
sipative optomechanical couplings. The solid blue curve
corresponds to ~A= ~B ¼ 10, the long-dashed green curve to
~A= ~B ¼ 0:75, and the short-dashed red curve to ~A= ~B ¼ 0. Each
curve has been scaled by its maximum value. (b) Number of
oscillator quanta nosc versus drive detuning �, obtained by
solving the full equations of motion for a purely dissipative
optomechanical coupling (i.e., ~A ¼ 0). The dotted blue curve is
the Bose-Einstein factor neff corresponding to the backaction
effective temperature Teff when � ¼ !M [i.e., neff ¼
SFFð�!MÞ=½SFFð!MÞ � SFFð�!MÞ�]. The remaining curves
correspond to ~B �a ¼ 0:2, neq ¼ 50, � ¼ 10�6!M, and �=!M ¼
0:2 (green solid curve), �=!M ¼ 1:0 (purple long-dashed curve),
�=!M ¼ 5:0 (red short-dashed curve).
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optimal drive strength, beyond which nosc starts to in-
crease; this additional heating effect scales as
ð�BA=!MÞ2. Nonetheless, the minimum value of nosc can
still be significantly less than 1.

Physical realization.—The dissipative optomechanical
coupling analyzed here could be realized in a microwave
electromechanical system similar to those studied in
Refs. [13,14]. In such systems, a capacitor C1 couples the
cavity to a transmission line (impedance Z0) which both
drives and damps the cavity. One would now need to make
C1 mechanically compliant [see Fig. 2(b)]. In general, such
a setup will have both dissipative and dispersive optome-

chanical couplings (i.e., ~A � 0, ~B � 0). A careful analysis
shows that in the physically relevant regime C1 � C, one

can have ~A ’ ~B if the cavity impedance ZR ¼ ffiffiffiffiffiffiffiffiffiffi
L=C

p
is

made slightly smaller than Z0 ’ 50�. For example, taking
experimentally achievable parameters !R¼2��10GHz,
C¼3:2 pF and C1¼0:01C results in �=!R’10�3 and

j ~A= ~Bj ’ 2:5. Equation (6) then implies that ground-state
cooling via destructive noise interference is possible if one
uses a drive detuning �¼�opt¼!M=2þ2:5�. We stress

this conclusion is independent of the magnitude of !M=�;
in contrast, if one had a purely dispersive cavity-
mechanical resonator coupling, ground-state cooling is
only possible if !M � �. A second setup where the dis-
sipative optomechanical coupling could be realized is an
optical Fabry-Pérot cavity containing a thin, moveable
dielectric slab. If the cavity is constructed with mirrors
having different reflectivities �L and �R, the motion of the
membrane will naturally modulate the damping rate of the
optical modes. The resulting value of ~B can be easily de-
rived using the approach of Ref. [18]. Note that in such a
system, one can position the membrane such that the opti-
cal mode frequency is insensitive to linear changes in x

[12]: one thus naturally achieves ~A¼0 and ~B/
ð�R��LÞ�0.

Position detection.—A straightforward calculation

shows that the power spectrum of b̂out, the output field
from the cavity, is modified in a simple way by the cou-
pling to the oscillator: the oscillator adds a term
Sxxð�!ÞSFFð!Þ (where ! is measured from the drive

frequency); this holds for both ~A, ~B � 0. Here, Sxxð!Þ ¼R
d�ei!�hx̂ð�Þx̂ð0Þi. One can thus use the peaks at ! ¼

�!M in the output spectrum to infer the temperature of the
oscillator. Note that for an optimal detuning � ¼ �opt, the

destructive interference effect means that the peak at ! ¼
!M in the output spectrum will vanish. This could serve as
an interesting test of our predictions.

Finally, specializing to the case where!M � �, one can
also use the dissipative optomechanical coupling to make a
quantum-limited, weak continuous position measurement
of the oscillator. One drives the cavity off resonance, and
performs a homodyne detection of the appropriate quad-
rature of the output field from the cavity. One finds from
Eqs. (3) and (4) that for any nonzero detuning �, the
corresponding backaction noise is as small as is allowed

by the uncertainty principle, meaning that one can reach
the quantum limit on the total added noise [20].
Conclusions.—We have considered a generic system

where a mechanical resonator modulates the damping of
a driven quantum cavity, and demonstrated how Fano
interference is important to the backaction physics. In
particular, one can have a perfect destructive interference
which allows the backaction to mimic a zero-temperature
environment; as such, such a system should allow near
ground-state cooling of the mechanics.
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