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We study the steady state of a finite XX chain coupled at its boundaries to quantum reservoirs made of

free spins that interact one after the other with the chain. The two-point correlations are calculated exactly,

and it is shown that the steady state is completely characterized by the magnetization profile and the

associated current. Except at the boundary sites, the magnetization is given by the average of the

reservoirs’ magnetizations. The steady-state current, proportional to the difference in the reservoirs’

magnetizations, shows a nonmonotonic behavior with respect to the system-reservoir coupling strength,

with an optimal current state for a finite value of the coupling. Moreover, we show that the steady state can

be described by a generalized Gibbs state.
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Understanding the nonequilibrium behavior of quantum
systems on the basis of general principles is one of the
more challenging prospects of statistical physics. In par-
ticular, the complete characterization of the so-called
quantum nonequilibrium steady states (QNESS), i.e., sta-
tionary current full quantum states, is of primary and
central focus since they are possible candidates for playing
a role similar to Gibbs states in constructing nonequilib-
rium statistical mechanics [1–8].

To elucidate the general guiding principles for a non-
equilibrium statistical mechanics, exactly solvable models
play a central role. Among many models, the XX quantum
chain is one of the simplest nontrivial many-body systems.
Its N-sites Hamiltonian is given by

HS ¼ � J

2

XN�1

l¼1

½�x
l �

x
lþ1 þ �y

l �
y
lþ1� þ

h

2

XN
l¼1

�z
l ; (1)

where the �’s are the usual Pauli matrices, J is the ex-
change coupling, and h is a transverse (possibly external)
magnetic field. Because of the fact that its dynamics can be
described in an explicit way, the one-dimensional XX
model has been extensively studied in various nonequilib-
rium contexts [9]. On the experimental side, the most
promising perspectives for these studies come from the
ultracold atoms community since the XX model (1) can be
mapped on a one-dimensional hard-core boson (Tonks-
Girardeau [10]) model through the transformation bþl ¼
ð�x

l þ i�y
l Þ=2 and bl ¼ ð�x

l � i�y
l Þ=2. Experiments on

such 1D hard-core bosons have been performed with ru-
bidium atoms in both continuum [11] and lattice [12]
versions.

Antal et al. [13] studied the ground state of the Ising and
XX chain Hamiltonian with the addition of a magnetization
or energy current J via a Lagrange multiplier. The ground
state of the effective Hamiltonian HS � �J was inter-
preted as a nonequilibrium stationary current full state.

Such an effective Hamiltonian was supposed to capture
locally the essential features of a finite chain coupled at its
boundary sites to quantum reservoirs. Soon after, Ogata
[14] and Aschbacher and Pillet [15] considered the aniso-
tropic XY steady state induced by the unitary dynamics
UðtÞ ¼ e�itHS starting with an initial state in which the left
and right halves are set at inverse temperature �L and �R,
respectively. They showed that the QNESS can be effec-

tively described by a generalized Gibbs state �e� ��HSþ�Y ,
where �� ¼ ð�L þ �RÞ=2 is the average inverse tempera-
ture and � ¼ ð�L � �RÞ=2 is a driving force coupled to a
long-range operator Y commuting withHS. The operator Y
is given by Y ¼ P1

l¼1 �lYl, where Yl are currents operators

associated to lth sites conserved quantities and where the
coefficients �l show a power law decay (�1=l). The long
range of Y is a signature of a strong nonlocal properties of
the QNESS which is believed to be a generic feature of
NESS [14]. One may notice that the Antal et al. steady
state relates to the same effective Hamiltonian truncating
the current series Y ¼ P

l�lYl to the first few terms.
In this work we study the N-site isotropic XX chain (1)

coupled at its boundary sites to quantum reservoirs at
different temperatures. In the anisotropic case a recent
study has been reported in Ref. [16] with Markovian
baths. Here the left and right reservoirs are made of an
infinite set of noninteracting spins 1=2 in the same trans-

verse field h with Hamiltonian HLðRÞ
E ¼ P1

n¼1 H
LðRÞ
n ¼

h
P1

n¼1 b
LðRÞþ
n bLðRÞn . The system-reservoir couplings are

implemented via a repeated-interaction scheme, meaning
that each subsystem (particle) composing the reservoirs is
interacting with the system one after the other [17]. To
have a physical picture of such an interaction scheme, one
may think of a laser (or particle) beam falling on the
system. The system-reservoir interaction is given by the
time-dependent Hamiltonian VðtÞ ¼ VLðtÞ þ VRðtÞ, where
VLðRÞðtÞ ¼ Vn

LðRÞ 8 t 2�ðn� 1Þ�; n��, with
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Vn
LðRÞ ¼ �JE½bLðRÞþn b1ðNÞ þ bþ1ðNÞb

LðRÞ
n �; (2)

selecting the nth left- and right-reservoir spins in the time
interval t 2�ðn� 1Þ�; n��.

We start at t ¼ 0 with a system-environment decoupled
initial state �ð0Þ ¼ �Sð0Þ � �Eð0Þ, where �S is an equi-
librium state of the system and where the environment
density matrix is given by �E ¼ �N��n ¼ �N� ð�L

n � �R
n Þ

with one-particle thermal density matrices �LðRÞ
n ¼

1
ZLðRÞ

e��LðRÞhb
LðRÞþ
n bLðRÞn ¼ 1þmLðRÞ

2 jþihþjþ 1�mLðRÞ
2 j�ih�j, with

�zj�i ¼ �j�i. At t ¼ 0þ, the first left- and right-
reservoir spins start to interact with the left and right
system boundary spins for a time � through the hopping
term V1

LðRÞ. At t ¼ �þ, the first reservoir spins are replaced
by the second ones interacting with the system through
V2
LðRÞ for a time �. The process is then repeated again and

again. Iterating the process n times, the reduced density
matrix associated to the system part is given at time t ¼ n�
by

�Sðn�Þ ¼ TrEfe�i�Hfng
Tot�½ðn� 1Þ��ei�Hfng

Totg
¼ TrnfUfng

I �S½ðn� 1Þ�� � �nU
fngy
I g; (3)

where Hfng
Tot ¼ HS þHE þ Vfng

I is the total Hamiltonian in
the time interval ½ðn� 1Þ�; n�� with the interaction part

VðnÞ
I ¼ VðnÞ

L þ VðnÞ
R and whereUfng

I ¼ e�i�ðHSþVfng
I þHnÞ, with

Hn ¼ HL
n þHR

n .
To solve the recursive dynamical equation (3), we in-

troduce the fermionic representation of the coupled part of

the total Hamiltonian HfSng ¼ HS þ Vfng
I þHn, which is

of the form (1) with N þ 2 sites, via the usual Jordan-
Wigner transformation [18]:

�1
k ¼ e

i�
P

k�1
j¼0

bþj bjðbk þ bþk Þ;
�2
k ¼ �ie

i�
P

k�1
j¼0

bþj bjðbk � bþk Þ;
(4)

where the �’s are Majorana real (Clifford) operators sat-

isfying �y ¼ � and f�	
i ;�

�
j g ¼ 2�ij�	�. Notice here that

the zeroth label is associated to the left-reservoir spin and
theN þ 1th to the right one, keeping the 1; . . . ; N labels for
the system. The interacting part of the total Hamiltonian

takes the form HfSng ¼ 1=4�yTSn�, where �y ¼
ð�1

0;�
1
1; . . . ;�

1
Nþ1;�

2
0; . . . ;�

2
Nþ1Þ is a 2ðN þ 2Þ-component

operator and where the 2ðN þ 2Þ � 2ðN þ 2Þ matrix T is
given by

TSn ¼ 0 CSn

Cy
Sn 0

� �

with the tridiagonal matrix ðCSnÞlm ¼ �iðh�lm þ
Jl�lm�1 þ Jm�lmþ1Þ containing system-environment cou-
plings J0 ¼ JN ¼ JE and Jl ¼ J 8 l ¼ 1; . . . ; N � 1 for
the system part. The interesting point in using the �’s is

that their time evolution, generated by HfSng, is simply
given by a rotation RðtÞ: �ðtÞ ¼ RðtÞ�ð0Þ ¼ e�itTSn�ð0Þ
[9].
Since the total initial state is Gaussian in terms of

fermions, the reduced system-density matrix remains
Gaussian during the repeated-interaction process [19,20].
No many-body interactions are generated during the time
evolution. As a consequence, thanks to Wick’s theorem,
one may characterize completely the state of the system at
any time by its two-point correlation matrix GSðtÞ defined
by ½GSðtÞ�jk ¼ i

2 TrSf½ð�SÞk; ð�SÞj��SðtÞg. Along the same

lines, the two-point correlation matrix GfSngðn�Þ character-
izes completely at time n� the total state of the nth environ-
ment copyþ system. For these reasons, instead of
computing directly the system-density matrix, thanks to
(3), we will study the correlation matrix and reconstruct
afterwards from it the density matrix.

Ordering the�y ¼ ð�y
E;�

y
S Þ such that the first part�y

E ¼
ð�y

L;�
y
RÞ is associated to the nth copy of the environment

and that �y
S contains the components of the system, we

write the rotation matrix Rð�Þ as

Rð�Þ ¼ e�i�TSn ¼ RE RES

RSE RS

� �
: (5)

Using this decomposition into (3), one arrives at the fun-
damental dynamical equation governing the system:

GSðn�Þ ¼ RSGS½ðn� 1Þ��Ry
S þ RSEGER

y
SE: (6)

The 4� 4 environment correlation matrixGE describes the
initial environment state. It is evaluated with respect to the
environment two-spin initial state �L

n � �R
n . If the system is

decoupled from the reservoirs (JE ¼ 0), the rotation matrix
splits into a block diagonal form, with RES ¼ 0, RSE ¼ 0,
reflecting the separate unitary evolution of the system and
the environment through RS and RE, respectively.
Introducing the infinitesimal generator L through the dy-

namical map	�
SðXÞ � e��LðXÞ � RSXR

y
S , one may iterate

Eq. (6) which becomes in the continuum limit GSðtÞ ¼
e�tL½GSð0Þ� þ

R
t
0 dse

�sLð ~GEÞ, with ~GE � RSEGER
y
SE.

The explicit form of the generatorL depends on the proper
way one rescales the interaction couplings in the contin-
uum limit � ! 0. To take into account the nontrivial effect
of the interaction between the system and the environment,
one has to rescale the interaction couplings JE ! JE=

ffiffiffi
�

p
.

Other rescalings give either trivial limits or no limit at all
[17,21]. The total T matrix then takes the form

TSn ¼ TE �=
ffiffiffi
�

p
�y=

ffiffiffi
�

p
TS

� �
;

where TE and TS are T matrices of the environment and
system parts, respectively, while � is a 4� 2N matrix
describing the system-environment interaction with com-
ponents ð�Þkl ¼ �iJEð�k1�lNþ1 � �k2�l1 þ �k3�l2N �
�k4�lNÞ. Developing the exponential Rð�Þ ¼ e�i�TSn to
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the lowest order in � and projecting to the system part leads
to the Linblad-like differential equation @tGSðtÞ ¼
�L½GSðtÞ� þ�yGE� with the generator Lð:Þ ¼
i½TS; :� þ 1

2 f�y�; :g.
Using the expressions of the interaction matrix TSn and

the antisymmetry of the correlation matrix, one arrives
finally at two coupled N � N matrix equations:

@tGd ¼ �i½Go; CS� � J2E
2
�d;

@tGo ¼ i½Gd; CS� � J2E
2
�o � J2EME;

(7)

where the N � N matrices Gd and Go are defined through

GS ¼ Gd Go

�GT
o Gd

� �

and where CS is the restriction of CSn to the system part.
The matrix ME with elements ðMEÞkl ¼ mL�k1�l1 þ
mR�kN�lN contains the left and right environment magne-
tizations. The relaxation matrices �d;o, related to

f�y�; GSg, are given by

�
 ¼

2G
11 G
12 . . . G
1N�1
2G
1N

G
21 0 . . . 0 G
2N

..

. ..
.

0 ..
. ..

.

G
N�11
0 . . . 0 G
N�1N

2G
N1
G
N2

. . . G
NN�1
2G
NN

0
BBBBBBB@

1
CCCCCCCA

(8)

with 
 ¼ o; d. Notice that these matrices contain an iden-
tically vanishing internal ðN � 2Þ � ðN � 2Þ square.

It can be proven that the steady state is unique [16,22]
and reached exponentially with a relaxation time T � N3

[16]. The steady-state correlation matrixG�
S obeys (7) with

the left-hand side set to zero. In the vanishing square sector
of �d;o, thanks to the antisymmetry of the correlation

matrix GS, one derives from (7) the space translation
invariance of the matrix G�

d: ðG�
dÞkl ¼ G�

dðl� kÞ. It im-

plies, in particular, that the steady-state magnetization
current hJ m

k i� ¼ 2JG�
dkkþ1 � 2Jj�, defined through the

quantum continuity equation _�z
k ¼ i½HS;�

z
k� ¼

J m
k�1 � J m

k , is constant all along the chain. Using this

translation invariance, one reduces the full set of steady
equations to

m�
1 �m� ¼ �j� ¼ m� �m�

N;

mL �m�
1 ¼ j�=� ¼ m�

N �mR;
(9)

with � ¼ J2E
2J and where m�

k ¼ h�z
ki ¼ �ðG�

oÞkk is the

steady-state magnetization at site k, which takes a constant
value denoted m� 8 k ¼ 2; . . . ; N � 1. One finds that all
other correlation matrix elements are identically vanishing
in the steady state. From (9) it appears that the four
unknowns j�, m�, m�

1, and m�
N are functions of � and

mL;R (that is on �L;R and h) only and consequently size-

independent. Solving (9) one finally finds that the exact
steady-state properties are fully characterized by a station-
ary current

j� ¼ �

1þ �2

mL �mR

2
(10)

and a flat magnetization profile

m�
k ¼ m� ¼ mL þmR

2
8 k ¼ 2; . . . ; N � 1 (11)

for the bulk spins and m�
1 ¼ m� þ �j� and m�

N ¼ m� �
�j� for the boundary sites. The size independence of these
quantities has to be related to the perfect ballistic nature of
the elementary excitations transport properties. One may
notice that the boundary values are deviating from the flat
profile by an amount which is proportional to the current
value. However, in the large reservoir coupling limit � !
1, the magnetizations of the left and right boundary sites
tend to the corresponding reservoir values. It is interesting
to note that, while the bulk magnetization profile is inde-

pendent of the interaction strength ratio � ¼ J2E
2J , the current

shows a nonmonotonic behavior (see Fig. 1) with a maxi-
mal current state for � ¼ 1. One may explain this behavior
by noticing that at small � the system is very weakly
coupled to the reservoirs, and it is very unlikely to inject
a particle (or flip the boundary spin) at the boundary site,
leading to a small current value. On the contrary, for large
� the coupling to the reservoirs is much larger than the
chain coupling, and it is very easy to flip the boundary spin
but hard to propagate this flip along the chain, and this
leads again to a small current.
From the knowledge of the two-point correlation matrix,

one can deduce the steady state ��
S of the system, which

will appear to be of generalized Gibbs form. To show that,
let us introduce Dirac fermions �1

k ¼ cþk þ ck and �2
k ¼

iðcþk � ckÞ and search for a quadratic form Q ¼P
i;jc

þ
i Aijcj such that ��

S � e�Q. The coupling matrix A,

givingQ, is deduced from the correlation matricesG�
d;o or,

equivalently, using the Dirac fermion representation, from

0 1 2 3 4 5 6 7 8 9 10
γ

0

0.1

0.2

0.3

0.4

0.5

2j
*/

(m
L
-m

R
)

FIG. 1. Rescaled stationary current as a function of the cou-

pling ratio � ¼ J2E
2J .
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N ij ¼ Trfcþj ci��
Sg thanks to the relation A ¼ lnð1�N

N Þ
[19,20].

In the large system size limit, after the diagonalization
of the correlation matrix N , one obtains from the pre-

vious relation Akþl;k ¼ ð�1ÞlAk;kþl ¼ 	l, where 	l�0 ¼
sgnlðj�Þ ðiÞll ½ð�1Þlzlðn�j� Þ � zlð1�n�

j� Þ�, with zðxÞ ¼ jxj �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
and 	0 ¼ ln½zðn�j� Þ=zð1�n�

j� Þ�. Using that into Q

one finally obtains the generalized Gibbs form ��
S �

e�	0Q0=2��l�0	lQl , with Ql ¼ P
jc

þ
jþlcj þ ð�1Þlcþj cjþl a

set of conserved quantities.
To interpret this result and eventually extract an effective

temperature characterizing the QNESS, consider first the
undriven situation j� ¼ 0 for which �L;R ¼ �ðnL;R ¼ n�Þ.
In that case, since 	l / ðj�Þl, all 	l�0 ¼ 0 while 	0 re-

duces to ln1�n�
n� ¼ �h. Consequently the stationary state

reached in our setup is described by the equilibrium Gibbs

state e��H0
with a free spin reference Hamiltonian H0 ¼

h
2M

z ¼ h
2Q0 þ const and a temperature ��1 set by the

bath’s temperature.
To the lowest order in j� the state reduces to the near-

equilibrium form ��
S � e��effH

0þ½j�=2n�ð1�n�Þ�J1 , with �eff ¼
1
h ln1�n�

n� and J1 ¼ iQ1 the current operator with expecta-

tion hJ1i ¼ j�. At high temperatures �eff reduces to �� ¼
ð�L þ �RÞ=2.

From this analysis, it appears that the identification
�eff ¼ 	0=h is physically grounded. For a finite current
value one may use the symmetry property 	lð�j�Þ ¼
ð�1Þl	lðj�Þ to split

P
l�0	lQl into a currentlike part Y ¼P

l	0	2lþ1Q2lþ1, which is odd under boundary reflection,
and a remaining even part K ¼ P

l	1	2lQ2l [23]. The

steady state is written then ��
S � e��effH

0�Y�K with an

effective inverse temperature �eff ¼ 	0=h that can be

decomposed into �eff ¼ �conf þ�ðj�2Þ, where �conf ¼
1
h ln1�n�

n� is the configurational (level population) part and

� the current contribution. Since�� j�2 at small currents,
the current contribution to the temperature does not show
up in the linear regime.

In summary, we have obtained the exact QNESS of a
finite XX chain in contact at both ends with repeated-
interaction reservoirs. We have shown that the steady state
is completely specified a flat magnetization profile (parti-
cle density) and its associated current. The QNESS is given

by the generalized Gibbs state e��effH
0�Y�K at inverse

temperature �eff with respect to a reference Hamiltonian
H0. The many-body terms K and Y, built on system-
conserved quantities, are, respectively, symmetric and anti-
symmetric with respect to j�.
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