PRL 102, 207202 (2009)

PHYSICAL REVIEW LETTERS

week ending
22 MAY 2009

Excitation of Chaotic Spin Waves in Magnetic Film Feedback Rings
through Three-Wave Nonlinear Interactions

Aaron M. Hagerstrom,' Wei Tong,' Mingzhong Wu,"* Boris A. Kalinikos,? and Richard Eykholt'

1Deparlment of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
2St. Petersburg Electrotechnical University, 197376, St. Petersburg, Russia
(Received 31 December 2008; published 18 May 2009)

This Letter reports experimental results on the three-wave interactions of backward volume spin waves
in a magnetic film and the excitation of chaotic waves through such interactions in a magnetic film-based

active feedback ring. The three-wave interactions manifest themselves in the power saturation responses
of spin waves, and the chaotic excitation manifests itself in chaotic waveforms and broad spectra. The
fractal dimensions of the chaotic signals are finite and can be controlled by changing the ring gain.
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Three-wave nonlinear interactions can serve as a route to
chaotic excitation [1-8]. The experimental demonstration
of such an excitation has been carried out in (1) ultrasonic
waves in crystals and (2) spin waves in magnetic films. In
both cases, the three-wave interactions involved two differ-
ent types of waves. For (1), the development of the chaos
was through the interactions of longitudinal and transverse
ultrasonic waves [5]. For (2), the chaos was excited
through the interactions between surface and volume spin
waves [6-8].

When a magnetic film strip is magnetized to saturation
along its length, it supports the propagation of backward
volume spin waves [9,10]. These waves are termed ‘“‘back-
ward” because they have negative group velocity in the
low wave number region. They can travel “forward”” when
the wave numbers are high. In principle, such spin waves
can also undergo three-wave interactions if the magnetic
field is set low so that the frequency of a spin wave and its
half are both within the frequency band of the allowed
wave spectrum. However, such interactions will involve
only one and the same type of wave, rather than two types
of waves as in previous work [5-8]. In practice, such
interactions and the chaotic excitation through them have
never been demonstrated.

This Letter reports for the first time (1) the experimental
evidence for three-wave interactions of backward volume
spin waves and (2) the excitation of chaotic spin waves
through these interactions. For (1), one measures the power
saturation of backward volume spin waves at low fields.
Such saturation responses indicate the occurrence of three-
wave interactions. For (2), one measures and characterizes
chaotic spin waves that are self-generated in a magnetic
film feedback ring. The three-wave interactions involve
two parametric processes, a splitting process wy = w; +
w,, where an initial wave of frequency w, produces two
new waves with frequencies o, and w, at about w/2, and
a confluence process w; + w, = w3, where two of the
parametrically excited waves interact to produce one
high-frequency wave ws;. When the waves are strong,
such processes can lead to the generation of many new
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waves with frequencies close to but different from the
initial frequency w,, and this leads to the broadening of
frequency spectra and the excitation of chaotic waveforms.

It is worth mentioning that there is a lot of previous work
on the nonlinear effects of backward volume spin waves,
including work on solitons [11], recurrence [12], Bose-
Einstein condensation [13], and chaos [14]. For all of these,
however, the magnetic fields were set high so that three-
wave interactions were prohibited and four-wave interac-
tions were the only underlying nonlinear process. In addi-
tion to the work on spin-wave chaos mentioned above [6—
8], there are other studies on the three-wave interactions of
spin waves [15—19]. In all of them, the three-wave inter-
actions were between surface and volume waves. Note
that, in Refs. [8,15,16,18], the three-wave interactions
were demonstrated through the power saturation of surface
spin waves, while, in Ref. [19], the interactions were
demonstrated by measurements of half-frequency volume
modes with a Brillouin light scattering (BLS).

The present experiments used a magnetic yttrium iron
garnet (YIG) film strip, which was magnetized to satura-
tion by a magnetic field parallel to the strip’s length. This
field configuration corresponds to the propagation of back-
ward volume spin waves [9,10]. Two microstrip line trans-
ducers were placed over the YIG strip to excite and detect
spin waves [11]. For the measurements on the spin-wave
power saturation, one applied continuous microwaves to
the excitation transducer and measured the signals from the
detection transducer. For the measurements on chaotic
waves, one used a feedback ring configuration where the
output signal from the detection transducer was fed back to
the excitation transducer through a microwave amplifier
and an adjustable microwave attenuator. No external signal
was introduced to the ring. The ring signal was sampled
through a directional coupler, with feeds to an oscilloscope
for temporal measurements and a spectrum analyzer for
frequency analysis. Details on the feedback ring can be
found in Ref. [20].

For the data presented below, the YIG strip was 5.0 um
thick, 1.88 mm wide, and 60 mm long. It was cut from a
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larger YIG film grown on a gadolinium gallium garnet
substrate. The microstrip line transducers were 50 um
wide and 2 mm long. Their separation was 5 mm. The
amplifier had a 30 dB dynamic range, a peak output power
of 2 W, and a linear response from 2 to 8 GHz. This
amplifier configuration insures that the nonlinear response
of the ring is determined solely by the YIG film.

Figure 1 shows data for the YIG-transducer structure.
The left and right columns are for a high field and a low
field, respectively. These fields were chosen to illustrate the
“off” and “on” regimes of the three-wave processes. The
top panel shows the calculated dispersion curves [21,22].
The solid lines mark the frequency bands of the spin waves
excited in the experiments. The corresponding half-
frequency bands are marked by dashed lines. In principle,
it is possible to excite a large number of spin-wave modes
that propagate along the YIG strip but also have nonzero
wave vectors normal to the YIG film. In practice, however,
only the main mode, the one with the simplest dynamical
magnetization distribution across the film thickness, is
efficiently excited and measurable, and all of the other
modes are very weak in comparison with the main mode
[9,23]. The dispersion curves in the top panel are for the
main modes. The middle panel shows the transmission
responses of the YIG-transducer structure. The black
curves and gray empty circles are for the data measured
at different input microwave power levels (P;,), as indi-
cated. The bottom panel shows the output power (P,) vs
input power responses for the same structure. They were
measured at different frequencies, as indicated.

Graph (a-i) shows that, at H = 753 Oe, the half-
frequency cuts of the excited waves are well below the
theoretical wave band. However, as the field is reduced to
300 Oe, the dispersion curve shifts downward and the half
frequencies are now within the wave band, as in (b-i).
These results indicate that the 753 Oe configuration corre-
sponds to a high-field regime where three-wave processes
are prohibited, while the 300 Oe configuration corresponds
to a low-field regime where three-wave processes are
allowed. The data in the middle panel show a perfect match
between the two curves for H = 753 Oe and a significant
difference between the two curves for H = 300 Oe. These
results indicate that, in the high-field regime, the trans-
mission loss of the waves is power-independent, while, in
the low-field regime, the transmission loss strongly de-
pends on the input power. The data also show that the
bandwidths of the excited waves (about 50 MHz) are
much narrower than the theoretical bandwidths (over
1 GHz). This is associated with the width effect of the
transducers and the group velocity properties of the waves
[9,10]. The data in (a-iii) and (b-iii) show significantly
different responses. For H = 753 Oe, the three P ,-P;,
responses are all linear. For H = 300 Oe, however, one
sees saturation responses.

The data in Fig. 1 provide the first demonstration of
three-wave interactions of backward volume spin waves. In
the high-field regime, three-wave interactions are not al-
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FIG. 1. Evidence for three-wave interactions of backward vol-
ume spin waves. The top panel shows the calculated frequency
vs wave number dispersion curves. The middle panel shows the
measured transmission loss vs frequency curves for a YIG-
transducer structure. The bottom panel shows the output power
vs input power responses for the same structure. The left and
right columns are for different magnetic fields, as indicated.

lowed, and the energy of the excited waves cannot dissi-
pate through three-wave processes. As a result, the energy
of the spin waves increases linearly with the input power.
This accounts for the lack of dependence of the trans-
mission loss on P;, shown in (a-ii) and the linear P,-P;,
responses shown in (a-iii). In the low-field regime, the
energy of the spin waves increases linearly with the input
power if the power of the spin waves is lower than the
threshold for the onset of three-wave processes. If the
power is beyond the threshold, the energy of the spin waves
will be transferred to the half-frequency modes through a
splitting process. As a result, one observes high loss at high
power, as shown in (b-ii), and saturation in the P,,-P;,
responses, as shown in (b-iii). Note that the half-frequency
modes have very large wave numbers, as shown in (b-i),
and, therefore, cannot be probed by the detection trans-
ducer [10]. The data in (b-iii) also indicate a power thresh-
old of about —30 dBm. This threshold is much lower than
that for the three-wave interactions between backward
volume spin waves and surface spin waves [8].

Turn now to the chaotic excitation through the above-
described processes in a ring system. A feedback ring has a
number of eigenmodes. Their frequencies are determined
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by k(w) - [ + ¢y = 27n, where k is the spin-wave wave
number, w is the spin-wave frequency, / is the transducer
separation, ¢ is the phase shift introduced by the feedback
circuit, and n is an integer. Detailed discussion on these
eigenmodes can be found in Refs. [24,25]. At a low ring
gain G, all of the eigenmodes experience an overall net
loss, and there is no spontaneous signal in the ring. If the
ring gain is increased to a certain level, here taken as G =
0, the eigenmode with the lowest decay rate will start to
self-generate, and one will obtain a continuous wave at this
eigenmode frequency. A further increase in G leads to the
excitation of additional eigenmodes, enhancement of
modes, and subsequent excitation of half-frequency modes
through the splitting process. Strong half-frequency modes
can also interact to produce new modes through a conflu-
ence process. The splitting and confluence processes obey
energy conservation, wg = w; + w, and w| + w, = w3,
respectively, as well as momentum conservation kq, =
k; + k, and k; + k, = ks, respectively, where k; is the
wave vector for the mode of frequency w;. The interplay of
these processes leads to the production of new modes, the
broadening of the spectra, and the excitation of chaotic
spin waves.

Figure 2 shows representative ring signals that demon-
strate the effects discussed above. The signals were ob-
tained at 300 Oe and different ring gain levels, as indicated.
In each panel, the left and right graphs show the power-
frequency spectrum and the time-domain waveform, re-
spectively. The insets in (a) and (c) show the corresponding
data in expanded horizontal scales.

For G = 0, one observes a single frequency peak at
2.295 GHz and a continuous wave in the time domain, as
in (a). This corresponds to the self-generation of the eigen-
mode with the lowest decay rate. As the gain is increased to
1 dB, a new mode appears at 2.287 GHz. This mode and the
initial mode interfere to produce a periodic modulation in
the waveform, as in (b). One also observes several other
eigenmodes in the spectrum, but they are too weak to
produce any noticeable responses in the time domain. As
the gain is further increased to 1.5 dB, one observes the
enhancement and broadening of the peaks in the frequency
domain and a chaotic behavior in the time domain, as
in (c). Now, each frequency peak does not represent a
single frequency but consists of a broad spectrum, as
represented in the inset in (c). Additional increases in G
lead to the further enrichment of the chaotic dynamics.
This is represented in (d).

These results clearly demonstrate the development of
chaotic spin waves through the splitting and confluence
processes. It is important to emphasize that both the high-
frequency and half-frequency waves involved are volume
waves. This aspect is different from that in previous work
[6-8]. Also, the chaotic spectra are much narrower than
those reported in Ref. [8]. This is because the passband for
backward volume waves at low fields is narrower than that
for surface waves. It is also important to emphasize that
four-wave processes do not play a dominant role here.
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FIG. 2. Ring signals obtained at different ring gain levels as
indicated. The left and right graphs show the power vs frequency
spectra and the time-domain waveforms, respectively. The insets
show the corresponding data in expanded horizontal scales.

There are two reasons. First, four-wave processes usually
occur at a power threshold level much higher than that for
three-wave processes [26,27]. Second, the main peaks in
the frequency spectrum in (d) are unequally spaced, and
this indicates that the four-wave processes are not present.
With four-wave processes, the frequencies of the new
modes should be equally spaced, and the frequency spectra
at high ring gain levels should have a uniform comb
structure [20,25]. In fact, the central frequencies of all the
peaks in (d) match the theoretical ring eigenfrequencies.

Correlation dimensions were computed for the mea-
sured chaotic signals [28,29]. This involves the calculation
of the fraction of the pairs of points on the attractor whose
sup-norm separation is no greater than a probing distance r
[30]. This fraction is called the correlation sum C, and a
plot of C as a function of r is called a correlation plot. The
attractors were constructed through the method of time
delays [28,29]. The time delays were determined by the
use of a correlation integral approach [30]. The correlation
sum C scales with the probing distance r according to
C(r) « r?, where D is the correlation dimension. One
can obtain D by taking the slope of the linear scaling region
of the log(C) vs log(r) plot.

When one increases the embedding dimension of an
attractor, the correlation dimension initially increases and
then reaches a limit when the embedding space is large
enough for the attractor to untangle itself. This limiting
correlation dimension is the fractal dimension of the cha-
otic signal. The correlation dimension can be used to
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FIG. 3. (a) Correlation plots for the ring signal obtained at
G = 1.5 dB. From left to right, the embedding dimensions of the
plots increase from 2 to 15. (b) Correlation dimension vs
embedding dimension responses for the signals obtained at
different ring gain levels, as indicated.

distinguish chaotic waves from noise, because noise does
not have a finite fractal dimension. As noise fills up the
space densely, the corresponding correlation dimension
continues to increase with the embedding dimension.

Figure 3 gives representative data. (a) shows the corre-
lation plots for the G = 1.5 dB signal. (b) shows the
correlation dimension vs embedding dimension responses
for the signals obtained at different ring gain levels, as
indicated. Note that, for all the calculations, the attractors
were constructed from the envelopes of waveforms.

The plots in (a) show a clear linear region as indicated. It
was this region where the slopes of the plots were taken to
give the correlation dimensions for the G = 1.5 dB signal.
The responses in (b) all show clear saturation. From these
saturation responses, the fractal dimensions of the signals
were estimated to be 4.8, 6.3, 8.3, and 12.5 for G = 1.5 dB,
1.6 dB, 2 dB, and 3 dB, respectively. These data clearly
demonstrate the chaotic nature of the measured signals and
the controllability of the dimension of the chaotic signal.

These results reveal a new physical mechanism for the
excitation of chaotic microwaves, which is critically
needed by chaotic communications [31]. The saturation
effect of the spin-wave power can be used to develop power
limiters and signal-to-noise enhancers [10,15,16,18]. Also,
it is worth noting that the details of the three-wave pro-
cesses of backward volume spin waves have now been
mapped through a BLS technique [32].
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