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Recently, it has been reported that the low-temperature high-magnetic field superconducting phase in

CeCoIn5 (Q phase), has spin-density wave (SDW) order that only exists within this phase. This indicates

that the SDW order is the result of the development of pair density wave (PDW) order in the super-

conducting phase that coexists with d-wave superconductivity. Here we develop a phenomenological

theory for these coexisting orders. This provides selection rules for the PDWorder and further shows that

the detailed structure of this order is highly constrained. We then apply our theory to the vortex phase. This

reveals vortex phases in which the d-wave vortex cores exhibit charge density wave order and further

reveals that the SDW order provides detailed information about the vortex phase.
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The low-temperature high-magnetic field phase in
CeCoIn5 (Q phase) has been thought to be the best example
of a Fulde, Ferrell, Larkin, and Ovchinnikov (FFLO) su-
perconductor [1–4] and has thus generated a tremendous
interest [5,6]. However, the recent measurements of
Kenzelmann et al. [7], suggest that this point of view
should be altered. This important experimental discovery
shows that the Q phase reveals itself through the appear-
ance of an incommensurate spin-density wave (SDW)
order. What is striking about this SDW order is that it
vanishes when superconductivity vanishes at high-
magnetic fields. This implies that superconducting order
is the primary order parameter with the SDWorder induced
as a secondary order parameter. A possibility for such
superconducting order, as pointed out by Kenzelmann
et al. [7], is pair density wave (PDW) superconductivity.
PDW order is defined microscopically through the expec-

tation value ��;�0 ðr; r0Þ ¼ hc y
�ðrÞc y

�0 ðr0Þi with periodicity

in the center of mass coordinate ðrþ r0Þ=2, so that the
Fourier transform with respect to this coordinate is peaked
at a nonzeroQ value. Psaltakis and Fenton have shown that
PDW order coexisting with usual superconducting order
implies the existence of SDWorder [8]. If the SDWorder is
associated with a wave vector Q, then the PDWorder must
have the wave vector �Q to be able to induce the SDW
order. The SDW order has Q ¼ ðq; q; 0:5Þ, which is too
large to be a consequence of the long-wavelength modu-
lation of a FFLO phase [3,4,9]. The PDW order is more
akin to the �-triplet staggered pairing suggested by Aperis
[10] or to the PDW order suggested in La2�xBaxCuO4 at
x ¼ 1=8 [11]. The ensuing physical picture is then a
d-wave superconductor at low fields with PDW order
appearing through a second order phase transition at high
fields. These two types of superconducting order will
coexist in the Q phase (together with the SDW order).

The observation of this PDWorder raises a series of deep
questions about the origin of this phase. To help address

these, we have developed a phenomenological theory for
this PDW order. Our approach is based on irreducible
representations of the full space group and complements
that given by Kenzelmann et al.We apply this theory to the
vortex lattice phase.
Prior to presenting our detailed results, it is worthwhile

highlighting our most important findings. These are pre-
sented in Table I, Fig. 2, and Eq. (13). Table I provides a
succinct classification of the possible types of PDW order.
The PDW order parameter has an independent complex
degree of freedom for each Qi shown in Fig. 1. Figure 2
reveals the existence of a class of vortex lattice solutions in
which three independent superconducting degrees of free-
dom (two PDW degrees of freedom and the d-wave degree
of freedom) all have vortex cores at different positions.
Finally, Eq. (13) reveals that an experimental investigation
of the position of the SDW order Bragg peaks will reveal,
not only the vortex lattice, but also the relative displace-
ments between the vortex cores of the two PDW and
d-wave order parameters. Now we turn to a detailed deri-
vation of these results.
PDW superconducting order parameter.—Our approach

is to classify the PDW order in terms of irreducible repre-
sentations of the full space group [12]. For CeCoIn5 this is
P4=mmm. For order appearing at a wave vector Q, the
order parameter is defined by the irreducible representa-
tions of GQ (set of elements conserving Q) and the star of

the wave vector Q (set of wave vectors symmetrically
equivalent to Q). For Q ¼ ðq; q; 0:5Þ ¼ ðq; q;�0:5Þ GQ ¼
fE;C2�; �z; �� gwith C2� the 180�-rotation around the axis
(1, 1, 0), �z and �� the mirror operations at the basal plane

and the plane perpendicular to (1, �1, 0), respectively.
Note (0, 0, 1) is a reciprocal lattice vector. In Table I, we
give the irreducible representations of GQ together with

representative basis functions for spin-singlet pairing (sca-
lar functions c ðkÞ [13]), spin-triplet pairing (vector func-
tions dðkÞ [13]), and spin-density order (Si). To define the
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additional order parameter components at the wave vectors
in the star of Q we use the elements fE;C4; C

2
4; C

3
4g (these

give the star of Q, fQ1;Q2;Q3;Q4g respectively, as shown
in Fig. 1). This then defines a superconducting order pa-
rameter with four components which we define as ��i

¼
ð��i;Q1

;��i;Q2
;��i;Q3

;��i;Q4
Þ. With these definitions, the

symmetry properties of the order parameter are given as
follows [D�i

ðgÞ defined in Table I]: translation T, ��i;Qj
!

eiQj�T��i;Qj
(��

�i;Qj
! e�iQ�Tj��

�i;Qj
); time-reversal opera-

tion ��i;Qj
! ��

�i;�Qj
. Moreover, the transformations GQ

lead to

C4: D�i
ðC4Þð��i;Q2

;��i;Q3
;��i;Q4

;��i;Q1
Þ;

�z: D�i
ð�zÞð��i;Q1

;��i;Q2
;��i;Q3

;��i;Q4
Þ;

C2�: D�i
ðC2�Þð��i;Q1

;��i;Q4
;��i;Q3

;��i;Q2
Þ;

�� : D�i
ð�� Þð��i;Q1

;��i;Q4
;��i;Q3

;��i;Q2
Þ:

(1)

Table I reveals that both singlet and triplet order parame-
ters belong to the same representation which implies that
singlet and triplet superconductivity are mixed. The phe-
nomenological theory below automatically incorporates
this mixing.

Free energy and PDW solutions.—We use a Ginzburg
Landau (GL) theory to describe the PDWand d-wave order
parameters. This will allow us to correctly identify the
properties of the PDWorder and make robust experimental
predictions. The PDW free energy density is constructed
by imposing invariance under the above symmetries (this is
the same for all �l),

f¼�
X

i

j��l;Qi
j2þ�1

�X

i

j��l;Qi
j2
�
2

þ�2

X

i<j

j��l;Qi
j2j��l;Qj

j2þ�3ðj��l;Q1
j2j��l;Q3

j2

þj��l;Q2
j2j��l;Q4

j2Þþ�4½��l;Q1
��l;Q3

ð��l;Q2
��l;Q4

Þ�
þð��l;Q1

��l;Q3
Þ���l;Q2

��l;Q4
�þ�1

X

i

jD��l;Qi
j2

þ�2

X

i

ð�1ÞiðjD1��l;Qi
j2�jD2��l;Qi

j2Þ

þ�3

X

i

jDz��l;Qi
j2þ1

2
ðr�AÞ2; (2)

where D ¼ �ir� 2eA, B ¼ r�A, D1 corresponds to

the (1, 1, 0), and D2 to the (1, �1, 0) direction. The free
energy density for the d-wave order parameter is

fd ¼ �dj�dj2 þ �dj�dj4 þ �jD�dj2 þ �cjDz�dj2: (3)

The coupling between these order parameters is given by
(this is the same for all �l):

fc ¼ �c1

X

i

j�dj2j��l;Qi
j2 þ �c2½�2

dð��l;Q1
��l;Q3

þ ��l;Q2
��l;Q4

Þ� þ c:c:�: (4)

This free energy is similar to one studied earlier in the
context of PDW order in Ref. [14]. The ‘‘homogeneous’’
phase in the absence of a magnetic field has five PDW
states distinct by symmetry, if we ignore the d-wave phase.
The presence of a d-wave order parameter selects two of
these phases [14] (the phase factors�1,�2, and�3 are not
determined by the free energy):

�ð1Þ
�l

¼ ðei�1 ; 0; ei�3 ; 0Þ;
�ð2Þ

�l
¼ ðei�1 ; ei�2 ; ei�3 ; eið�1þ�3��2ÞÞ:

(5)

Finally, a magnetic field along the (1, �1, 0) direction

favors the state �ð1Þ
�l

as it removes the degeneracy between

the Q1 and Q2 wave vectors (the pairs Q1, Q3and Q2, Q4

remain degenerate). The PDW order then has the spatial
dependence ��l;Q1

cosðQ1 �RÞ. In view of the coupling to

the d-wave order parameter the relative phase between �d

and��l;Q1
can be either 0 (�) or��=2 [14] which are both

permitted by the free energy. Therefore, the combined
PDW and d-wave superconductivity must then take one

FIG. 1. Directions of Qi used in the text. The field is applied
along the direction Q4.

TABLE I. Representative spin-singlet, spin-triplet, and spin-density basis functions for the different irreducible representations that
have momentum Q1 ¼ ðq; q; 0:5Þ.
Irrep (�i) D�i

ðEÞ D�i
ð�zÞ D�i

ðC2�Þ D�i
ð�� Þ Representative c ðkÞ) Representative dðkÞ Representative Si

�1 1 1 1 1 s; kxky ẑðkx � kyÞ; kzðx̂� ŷÞ,
�2 1 1 �1 �1 k2x � k2y ẑðkx þ kyÞ; kzðx̂þ ŷÞ Sz
�3 1 �1 �1 1 kzðkx þ kyÞ x̂kx � ŷky; x̂ky � ŷkx Sx � Sy
�4 1 �1 1 �1 kzðkx � kyÞ x̂kx þ ŷky; x̂ky þ ŷkx Sx þ Sy
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of two forms when vortices are ignored: j�dj þ
ij��l;1j cosðQ1 � RÞ (time-reversal violating phase) or

j�dj þ j��l;1j cosðQ1 � RÞ (time-reversal-invariant phase).

Coupling to spin-density wave.—We assume here that
the SDW is sufficiently weak so as to not alter the
free energy significantly. This is justified by noting that
the observed moment in CeCoIn5 is small (0:15	B) [7].
The free energy density we use is fSDW ¼ �sS

z
Q1
Sz�Q1

þ
fcoupling with �s > 0. To determine fcoupling, it is important

to note that the SDWorder breaks time reversal and can be
generated by the PDWand d-wave order in two ways. The
first is by coupling directly to the time-reversal symmetry
violating phase and the second is by coupling to the applied
magnetic field and the time-reversal-invariant phase. This
leads to two possible coupling terms, the first exists with-
out the magnetic field,


1iS
z
Q1
f��

d��1;Q3
��d�

�
�1;Q1

g þ c:c:; (6)

and the second exists only in a finite magnetic field


2HSzQ1
f��

d��4;Q3
þ�d�

�
�4;Q1

g þ c:c:; (7)

where we have included H, the magnetic field along the
(1, �1, 0) direction. The experimental observation of a
nonzero SzQ1

therefore leads to two possible types of PDW

order. In the time-reversal broken phase, the PDW order
must belong to the �1 representation. In the time-reversal-
invariant phase, the PDW order must belong to the �4

representation. This second possibility is most closely
related to the �-triplet staggered phase that has been found
within a simple microscopic description of CeCoIn5 [10].
Note that, in principle, both the representations �1 and �4

will appear simultaneously. However, it is reasonable to
expect that one of the two representations will give rise to
the dominant order parameter.

Role of vortices.—Prior to turning to the detailed analy-
sis, we present the two main results here: (i) The vortex
cores of the two PDW degrees of freedom��i;Q1

and��i;Q3

can lie at different positions and also need not coincide
with the d-wave vortex cores. We find that there exist
stable phases where this happens. These phases are defined
by the relative displacements �i of the PDW vortex cores
from the d-wave vortex cores. In such phases, the d-wave
vortex cores exhibit CDWorder. (ii) The SDWorder leads
to Bragg peaks that are determined by the reciprocal lattice
vectors of the vortex lattice and the displacements �i [see
Eq. (13)].

For a detailed derivation of the above results, we analyze
the simplest realistic situation. We assume that the corre-
lation length of the spin-density order is much smaller than
the coherence length of the superconducting order [this
simplification does not change the main result found in
Eq. (13)]. We take Eq. (7) as the term driving the SDW
order [the same arguments can be applied if Eq. (6) is
used]. From this we obtain

SzQ1
ðRÞ ¼ 
2H

�s

½�dðRÞ���4;Q1
ðRÞ þ �dðRÞ��

�4;Q3
ðRÞ�:

(8)

The spatial dependence of the PDW and d-wave order
parameter can now be determined in the high-field limit
for which the field H may be considered uniform. From
Eq. (3), one finds that the d-wave component yields an
Abrikosov vortex lattice. Using z to represent the (0, 0, 1)
and x the (1, 1, 0) direction, the vortex lattice solution can
be given by

�dð~x; ~zÞ ¼ �d0

X

n

cne
iqðn�1=2Þ~xe�ð~z�znÞ2=2; (9)

where ~x ¼ x=�, ~z ¼ �z, the vortex lattice in the coordi-
nates ~x, ~z has the basis vectors a ¼ ða; 0Þ and b ¼
bðcos�; sin�Þ [15], cn ¼ ei��n

2
e�i��ðnþ1Þ, q ¼ 2�=a,

zn ¼ b sin�ðnþ 1=2Þ, � ¼ ðb=aÞ cos�, and � ¼
½ð�� �cÞ=��1=4. The parameter � scales lengths in the x
and z directions to take the anisotropy into account. This

solution is an n ¼ 0 eigenstate of the operator ~D2 ¼ ~D2
x þ

~D2
z ¼ ð�i~r� 2e ~AÞ2 with eigenvalues ð2nþ 1Þ=l2 and

l2 ¼ �0=ð2�HÞ (n ¼ 0; 1; 2; . . . is the Landau level
(LL) index). The macroscopic degeneracy of the eigen-

states of ~D2 is exploited to create the Abrikosov vortex
lattice solutions and, at the same time, plays a central part
in constructing degenerate solutions for the displaced vor-

tex lattice ( ~�n) characterized by a vector �: ~�nðrþ �Þ ¼
e�iyx�nðrþ �Þ with �nðrÞ being a vortex lattice solution

in LL n.The states ~�n and�n are degenerate eigenstates of

the operator ~D2.
In order to determine the PDW vortex structure it suffi-

ces to consider the linear equation for the PDW order
parameter, which is found by keeping both Eqs. (3) and
(4), and by setting �i ¼ 0 in Eq. (3). As a technical
simplification, we set ð�1 � j�2jÞ=�3 ¼ �=ð�þ �cÞ to en-
sure that the d-wave order and the PDW order share the

same ~D2 operator and hence have the same eigenstates.
Minimization of the free energy yields the following for
the 2 degrees of freedom in the PDW order:

~���4;Q1
¼ ��c1j�dj2��4;Q1

� �c2�
2
d�

�
�4;Q3

;

~���4;Q3
¼ ��c1j�dj2��4;Q3

� �c2�
2
d�

�
�4;Q1

;
(10)

with ~� ¼ ð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1 � �2Þð�1 þ �3Þ
p

~D2Þ. To solve these
equations, we expand the PDW order in eigenstates of the
~D2 operator. At sufficiently high fields, the PDWorder will
lie predominantly in the n ¼ 0 eigenstate for both ��4;Q1

and ��4;Q3
, and we ignore the smaller higher n contribu-

tions here. As mentioned above, these solutions are degen-
erate, implying the use of two displacement vectors �1 and
�3. At the second order transition where the PDW order
appears, the vortex lattice structure is determined entirely
by the d-wave order parameter, so the only undetermined
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parameters are �1 and �3. Solving the resulting linear
equation yields the result that the optimal PDW state is

found by minimizing �c1�Að�1Þ � j�c2
~�ð�1; �3Þj with re-

spect to �1 and �3, where

�Að�Þ ¼
X

G

e�ðl2G2=2ÞeiG�� ; (11)

~�ð�1; �3Þ ¼
X

G

e�ðl2 ~G2=2ÞeiG��3 ; (12)

where G are the reciprocal lattice vectors of the vortex

lattice, ~G ¼ Gþ 2�B
�0

� �1 and ~� ¼ 0 unless �1 þ �3 ¼
T, where T is a vortex lattice translation vector. For
�c1 < 0 it follows immediately that �1 ¼ �3 ¼ 0 while
the solution for �c1 > 0 requires a numerical minimization
to determine �1. The resulting configurations are shown in
Fig. 2, assuming that the d-wave order forms a hexagonal
vortex lattice.

The phase diagram in Fig. 2 depends upon r ¼
j�c2=�c1j and in all the phases we can choose �3 ¼
��1. We find four phases: in phase 1 (0 � r < 0:07), �3 ¼

ðaþ bÞ and 
 evolves continuously from 1=3 to 1=2; in
phase 2 (0:07 � r < 0:31) 
 ¼ 1=2 (Fig. 2 shows �3 ¼
a=2 which is equivalent to �3 ¼ ðaþ bÞ=2); in phase 3
(0:31 � r < 0:5), �3 ¼ 
2a where 
2 changes continu-
ously from 1=2 to 0; finally in phase 4 (r > 0:5), �3 ¼ 0.
Arguments similar to Ref. [14] imply that in phases 1
through 3, the d-wave vortex cores have charge density
wave order at twice the PDW wave vectors.

From the solution of the vortex lattice, the SDW order
can be determined. This is particularly important experi-
mentally, since neutron scattering measures the Fourier

transform of SzðRÞ. Equation (8) yields the intriguing
result that the SDW order will exhibit Bragg peaks at k
positions that depend upon �1 and �3:

k ¼ Q1 þ Gþ 2�B

�0

� �; (13)

where G is a reciprocal lattice vector of the vortex lattice
and � is either �1 or �3. Consequently, the relative position
of the vortex cores of the PDW and d-wave order can be
retrieved from the position of the Bragg peaks in the SDW
order.
Conclusions.—We have developed a phenomenological

theory for the Q phase of CeCoIn5 to identify the possible
symmetries for the PDW order. This theory is used to
determine phases in which the PDW and d-wave vortex
lattice are relatively displaced, leading to CDWorder in the
d-wave vortex cores. Interestingly, these structures can be
probed by the position of the SDW Bragg peaks.
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FIG. 2 (color online). Possible vortex configurations for the
PDW order. The yellow circles give the zeroes of the d-wave
order parameter, the blue diamonds give the positions of the
zeroes of ��4 ;Q3

, and the red triangles give the positions of the

zeroes of ��4 ;Q1
.
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