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We develop a theory for the long-wavelength plasma oscillation of a collection of charged massless

Dirac particles in a solid, as occurring, for example, in doped graphene layers, interacting via the long-

range Coulomb interaction. We find that the long-wavelength plasmon frequency in such a doped massless

Dirac plasma is explicitly nonclassical in all dimensions with the plasma frequency being proportional to

1=
ffiffiffi
@

p
. We also show that the long-wavelength plasma frequency of the D-dimensional superlattice made

from such a plasma does not agree with the corresponding Dþ 1-dimensional bulk plasmon frequency.

We compare and contrast such Dirac plasmons with the well-studied regular palsmons in metals and

doped semiconductors which manifest the usual classical long-wavelength plasma oscillation.
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A collection of charged particles (i.e., a plasma), elec-
trons or holes or ions, is characterized by a collective mode
associated with the self-sustaining in-phase density oscil-
lations of all the particles due to the restoring force arising
from the long-range 1=r Coulomb potential. The classical
plasma frequency in three-dimensional (3D) plasmas [1] is

well known to be!3 ¼ ð4�n3e2=mÞ1=2, where e andm are,
respectively, the charge and the mass of each particle, and
n3 is the 3D particle density. (In this Letter, we use!D and
nD as the D-dimensional long-wavelength plasma fre-
quency and particle density, respectively.) A solid state
degenerate plasma [2–4] exists in metals and doped semi-
conductors where free carriers can move around quantum
mechanically in the ionic lattice background. Such a de-
generate quantum plasma has the quantized version of
exactly the same collective mode, the so-called plasmon
[2–4], which dominates the spectral weight of the long-
wavelength elementary excitation spectrum of an electron
liquid. (We will use the world ‘‘electron’’ generally
throughout this Letter to indicate either electron or hole.)
The collective plasmon modes of solid state quantum
plasmas have been extensively studied experimentally
and theoretically over the last 60 years in both metals
and doped semiconductors. In the present work, we study
theoretically the collective plasmon mode in a solid state
plasma of massless Dirac fermions, as occurring, for ex-
ample, in 2D graphene layers. We define the Dirac plasma
as a system of charged carriers whose energy-momentum
dispersion is linear, obeying the Dirac equation.

Our main qualitative result is that the massless Dirac
plasma is manifestly quantum, and does not have a classi-
cal limit in the form of an @-independent long-wavelength
plasma frequency, in a striking contrast to the correspond-
ing parabolic dispersion electron liquids familiar from the
extensive study of plasmons in metals and semiconductors
[3–5]. The long-wavelength plasmon frequency of a Dirac
plasma is necessarily quantum with ‘@’ appearing mani-
festly in the long-wavelength plasma frequency in D ¼ 1,

2, 3 dimension (and in between). By contrast the long-
wavelength plasma frequency of ordinary electron liquids
is classical, and quantum effects show up only as nonlocal
corrections in higher order wave vector dispersion of the
plasmon mode. This is quite unexpected in view of the
popular belief that the long-wavelength quantum plasmon
dispersion is necessarily a classical plasma frequency [2–
4]. The popular belief seems to be true for the usual
parabolic energy dispersion, but not for the linear Dirac
spectrum.
We start from the fundamental many-body formula de-

fining the collective plasmon mode in an electron system:

�ðq;!Þ ¼ 1� vðqÞ�ðq;!Þ ¼ 0; (1)

where �ðq;!Þ is the wave vector (q) and frequency (!)
dependent dynamical dielectric function of the system,
with �ðq;!Þ the irreducible polarizability and vðqÞ the
Coulomb interaction between the electrons in the wave
vector space. The zero of the dielectric function in
Eq. (1) signifies a self-sustaining collective mode, with
the solution of Eq. (1) giving the plasmon frequency as a
function of wave vector. We first recapitulate the known
results for the parabolic dispersion electron system before
discussing the novel collective dispersion for massless
Dirac plasma.
The Coulomb interaction in the wave vector space is

given by the appropriate D-dimensional Fourier transform
of the Coulomb interaction vðrÞ ¼ e2=�r

vðqÞ ¼ 4�e2

�q2
D ¼ 3; (2a)

¼ 2�e2

�q
D ¼ 2; (2b)

¼ 2e2

�
K0ðqaÞ D ¼ 1; (2c)

where we have introduced a background dielectric constant
(�) which, in general, differs from unity in semiconductor
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based electron systems, and K0 is the zeroth-order modi-
fied Bessel function of the second kind. We note that
K0ðxÞ � j lnðxÞj for x ! 0, and the length ‘‘a’’ in the 1D
Coulomb interaction in Eq. (2c) characterizes the typical
lateral confinement size of the 1D electron system (ES)
which is obviously necessary in defining a 1DES.

The irreducible polarizability function �ðq;!Þ of an
interacting ES is, in general, unknown since self-energy
and vertex corrections cannot be calculated exactly. A
great simplification, however, occurs in the long-
wavelength limit (q ! 0) when the dielectric function,
and, consequently, the plasmon frequency is determined
entirely by the noninteracting irreducible polarizability, the
electron-hole ‘‘bubble’’ diagram. The noninteracting irre-
ducible polarizability is given by the expression

�ðq;!Þ ¼ g
Z dDk

ð2�ÞD
nFð�kÞ � nFð�kþqÞ
@!þ �k � �kþq

Fðk; qÞ; (3)

where �k is the single-particle energy dispersion, i.e., �k ¼
@
2k2=2m for parabolic systems (and �k ¼ @vFk for the

massless Dirac plasma), nF is the Fermi distribution func-
tion, and Fðk; qÞ is the overlap form factor due to chirality.
For nonchiral systems Fðq; kÞ ¼ 1. The factor ‘‘g’’ in
Eq. (3) is the degeneracy factor: g ¼ gsgv where gs (¼2)
is the spin degeneracy and gv is the valley or pseudospin
degeneracy.

Putting �k ¼ @
2k2=2m, we can easily calculate Eq. (3)

upto the leading order in wave vector (i.e., the long-
wavelength limit) to obtain

�ðq;!Þ � nD
m

q2

!2
þOðq4=!4Þ: (4)

Combining Eqs. (1)–(4) we immediately obtain the well-
known long-wavelength plasma frequency in a
D-dimensional ES

!ðpÞ
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2e2n1
�m

s
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j lnðqaÞj

q
þOðq3Þ; (5a)

!ðpÞ
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�n2e

2

�m

s
q1=2 þOðq3=2Þ; (5b)

!ðpÞ
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�n3e

2

�m

s
þOðq2Þ; (5c)

where !ðpÞ
D denotes the long-wavelength (q ! 0) plasmon

mode in the D-dimensional parabolic dispersion ES (with
the carrier density nD per unit D-dimensional volume)
where the one particle energy is given by � ¼ @

2k2=2m !
p2=2m ¼ mv2=2 classically (where p ¼ @k is momen-
tum). The long-wavelength plasmon frequencies for para-
bolic dispersion systems given in Eq. (5) are, of course,
well known and have been verified experimentally exten-
sively [4–6]. Our purpose of deriving Eq. (5) is the explicit
demonstration, to be contrasted below with the correspond-
ing massless Dirac plasma, that the long-wavelength plas-

mon frequency !ðpÞ for parabolic systems is completely
classical since ‘@’ does not appear in the leading term of

Eq. (5) in any dimension. The second order dispersion

correction term in Eq. (5), i.e., the Oðq2; q3=2; q3Þ term in
D ¼ 3, 2, 1, respectively, is fully quantummechanical (i.e.,
‘‘@’’ shows up explicitly in the nonlocal wave vector cor-
rections), and is affected by interaction corrections (both
self-energy and vertex corrections to the irreducible
polarizability).
Now we consider plasmons in the D-dimensional mass-

less Dirac plasma, where the single-particle energy disper-
sion is linear, i.e., �k ¼ @vFjkj ! vp classically, in
D ¼ 1, 2, 3. The long-wavelength quantum plasmon dis-
persion is still defined by the set of formulas given by
Eqs. (1)–(3) with the explicit form of the noninteracting
irreducible polarizability being calculated with �k ¼
@vFjkj in Eq. (3).
The long-wavelength (q ! 0) form for the noninteract-

ing irreducible polarizability [Eq. (3)] can be calculated for
linear energy dispersion relation (i.e., �k ¼ @vFk) in all
dimensions, giving

�ðq;!Þ ¼ gvFk
D�1
F

Dð2�ÞD
2�D=2

�ðD2Þ
q2

!2
þOðq4=!4Þ; (6)

where kF is the Fermi momentum of the system and �ðxÞ is
the Gamma function. (We note that the chirality factor
Fðk; qÞ in Eq. (3) does not influence the long-wavelength
limit.)
Combining Eqs. (1), (2), and (6) we get the following for

the long-wavelength plasmon frequency, !ðlÞ
D , in D ¼ 1, 2,

3 Dirac plasma:

!ðlÞ
1 ¼ ffiffiffiffi

rs
p ffiffiffiffi

g

�

r
vFq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j lnðqaÞj

q
þOðq3Þ; (7a)

!ðlÞ
2 ¼ ffiffiffiffi

rs
p ðg�n2Þ1=4vFq

1=2 þOðq3=2Þ; (7b)

!ðlÞ
3 ¼ ffiffiffiffi

rs
p �

32�g

3

�
1=6

n1=33 vF þOðq2Þ; (7c)

where we have introduced the dimensionless fine structure
constant rsð � e2=ð�@vFÞÞ for notational simplicity.

Comparing Eqs. (5) and (7) we see that !ðpÞ and !ðlÞ
have one important similarity and several striking differ-
ences. The similarity is that the plasmon dispersion is the
same in the parabolic system and the massless Dirac
plasma for all D. This is indeed required under very
general principles, since for any Coulomb system the
long-wavelength plasmon dispersion is set by the continu-
ity equation (or equivalently, by particle conservation) to

be !Dðq ! 0Þ � qð3�DÞ=2 as is obeyed by both !ðpÞ
D and

!ðlÞ
D .

The most striking qualitative feature of!ðlÞ
D in Eq. (7), in

sharp contrast with the usual !ðpÞ
D in Eq. (5), is that @

appears explicitly in the leading term, not just the sublead-
ing nonlocal corrections. There is no classical plasma
frequency in the massless Dirac plasma, i.e., the long-
wavelength plasma frequency for ES with linear dispersion
explicitly depends on @, and is therefore, by definition,
nonclassical. This absence of a classical long-wavelength
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plasma frequency in the Dirac plasma is a direct manifes-
tation of the relativistic Dirac nature of the underlying
quantum description, and such a Dirac plasma does not
have a classical plasma frequency. Note that the nonclassi-
cal nature of the long-wavelength plasma oscillation of the
Dirac plasma is independent of the chirality or gaplessness
of graphene, and arises primarily from the linear Dirac
spectrum.

Associated with the appearance of 1=
ffiffiffi
@

p
in the long-

wavelength plasma frequency of the Dirac plasma are
several other interesting properties distinguishing it from
the standard parabolic dispersion Schrödinger plasma:
(i) The density dependence of the Dirac plasmon is differ-
ent from the regular plasmon [7,8]—in particular, the

density dependence is weaker in the sense that !ðlÞ
D /

n1=3, n1=4, n0 in D ¼ 3, 2, 1, respectively, in contrast

with !ðpÞ
D / ffiffiffi

n
p

in all dimensions. In general, the plasmon

frequency in the Dirac plasma is given by!ðlÞ
D / nðD�1Þ=2D.

(ii) The 1D Dirac plasmon frequency is curiously density
independent. (iii) The quantum coupling parameter (i.e. the
effective fine structure constant) shows up explicitly in the

long-wavelength Dirac plasmon frequency, !ðlÞ
D / ffiffiffiffi

rs
p

.

(iv) The long-wavelength Dirac plasmon !ðlÞ
D goes as

@
�1=2 for all dimensions whereas the long-wavelength

regular plasmon !ðpÞ
D goes as n1=2D in all dimensions.

Before concluding, we consider another interesting and
peculiar feature of the Dirac plasmon distinguishing it
from the regular plasmon. We consider collective modes
of periodic arrays of 2D Dirac plasma layers (for example,
a graphene superlattice made of parallel 2D graphene
sheets in the direction transverse to the 2D graphene plane)
and of 1D Dirac plasma nanoribbons (i.e., a graphene su-
perlattice made of identical 1D graphene nanoribbons
placed parallel to each other in the 2D plane). Collective
plasmon modes of such 2D [9] and 1D [10] superlattices
have been theoretically studied in the context of regular
parabolic systems, and have been experimentally observed
in doped GaAs multiquantum well and multiquantum wire
structures.

The main physics to be considered in describing the
collective plasmon modes of such superlattices is the in-
clusion of the interlayer or inter-ribbon Coulomb interac-
tion, which will necessarily couple all the layers (or the
ribbons) due to the long-range nature of the Coulomb
potential. This changes the fundamental collective mode
equation [Eq. (1)] to an infinite matrix equation:

j�ll0 � vll0 ðq;!Þ�l0 ðq;!Þj ¼ 0; (8)

where �l ¼ � is the irreducible polarizability of each 2D
layer (or 1D ribbon), which is exactly the same polariz-
ability considered in Eq. (3). In Eq. (8), vll0 is the Coulomb
interaction between the l and the l0 layer or ribbon in the
periodic array, which is given by

vll0 ¼ 2�e2

�q
e�qdjl�l0j D ¼ 2; (9a)

vll0 ¼ 2e2

�
½K0ðqaÞ þ K0ðqdjl� l0jÞ� D ¼ 1; (9b)

where d is the superlattice period (to be distinguished from
the length a in D ¼ 1 which defines the lateral width of
each ribbon).
The periodic invariance of the superlattice and the asso-

ciated Bloch’s theorem allow an immediate solution of the
infinite-dimensional determinantal equation defined by
Eq. (8), leading to the following collective plasmon bands
for the superlattice structure:

~!2sðq; kÞ ¼ !2ðqÞS2ðq; kÞ D ¼ 2; (10a)

~!1sðq; kÞ ¼ !1ðqÞS1ðq; kÞ D ¼ 1; (10b)

where ~!Ds is the plasmon band frequency for the super-
lattice (D ¼ 2 for the multilayer and D ¼ 1 for the multi-
ribbon periodic arrays) and !D is the corresponding 2D
(D ¼ 2) and 1D (D ¼ 1) plasmon modes discussed in
Eqs. (5) and (7). The wave vector q in Eq. (10) is the
same conserved 2D or 1D wave vector in each individual
2D layer or 1D nanoribbon defining the plasmon dispersion
relation !DðqÞ whereas the additional wave vector k is a
new continuous parameter defining the superlattice plas-
mon band (arising from the periodicity in the array struc-
ture). The band wave vector k is restricted to the first
superlattice Brillouin zone, k � �=d, in the reduced zone
scheme. For the 2D layer superlattice, if each layer is
assumed to lie in the x-y plane, then k ¼ qz is along the
superlattice direction of the z axis. For the 1D ribbon
superlattice, if each ribbon is assumed to be along the
x axis (i.e., q ¼ qx) with a width of a defining the ribbon
in the y direction, then k ¼ qy is along the superlattice

direction of the y axis.
The function SD in Eq. (10) is a form factor arising from

the Coulomb coupling between all the layers and the
ribbons forming the periodic array, and is given by

S2 ¼
X
l0
e�qjl�l0jd�iqzjl�l0jd; (11a)

S1 ¼
X
l0
½K0ðqjl� l0jdÞ cosðlqydÞ þ K0ðqaÞ�: (11b)

Combining the above equations for superlattice plasmons,
we get the following long-wavelength (q ! 0) plasmon
bands for 2D and 1D arrays in parabolic and Dirac plasma
systems, respectively:

~!ðp;lÞ
2s ðqÞ¼!ðp;lÞ

2 ðqÞ
�

sinhðqdÞ
coshðqdÞ�cosðqzdÞ

�
1=2

; (12a)

~!ðp;lÞ
1s ðqÞ¼!ðp;lÞ

1 ðqÞ
�
K0ðqaÞþ2

X1
n¼1

K0ðnqdÞcosðqyndÞ
�
1=2

:

(12b)

Equation (12) above defines plasmon bands for superlattice

PRL 102, 206412 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
22 MAY 2009

206412-3



arrays made out of periodic 2D layers and 1D ribbons in
parabolic and linear plasma systems.

An interesting quantum feature of ~!ðlÞ
Dsðq; kÞ is apparent

when one looks at the long-wavelength plasmon (q ! 0) at

the band-edge k ¼ 0, and compares ~!ðlÞ
Dsðq; k ¼ 0Þ with

~!ðpÞ
Ds ðq; k ¼ 0Þ. We get

~!ðpÞ
2s ðq;qz ¼ 0Þ ¼

�
4�~n3e

2

�m

�
1=2

with ~n3 ¼ n2
d
; (13a)

~!ðpÞ
1s ðq; qy ¼ 0Þ ¼

�
2�~n2e

2q

�m

�
1=2

with ~n2 ¼ n1
d
; (13b)

and

~!ðlÞ
2sðq;qz ¼ 0Þ ¼ ffiffiffiffi

rs
p ð4�gÞ1=4

�
~n3
d

�
1=4

vF; (14a)

~!ðlÞ
1sðq; qy ¼ 0Þ ¼ ffiffiffiffi

rs
p ffiffiffi

g

d

r
vF

ffiffiffi
q

p
: (14b)

We note that Eq. (13) for the usual parabolic electron
plasma has the appropriate physical limit at the band-
edge k ¼ 0, where theD-dimensional superlattice plasmon
should have the precise character of the corresponding
(Dþ 1)-dimensional bulk plasmon in the long-wavelength

limit, and indeed ~!ðpÞ
2s ðq; k ¼ 0Þ and ~!ðpÞ

1s ðq; k ¼ 0Þ are

identical to the corresponding 3D and 2D plasmons [in
Eq. (5)], respectively, with ~n3 ¼ n2=a and ~n2 ¼ n1=a. This
is exactly what one expects since the D-dimensional su-
perlattice ‘‘loses’’ its discrete periodic structure for k ¼ 0
and simply becomes the (Dþ 1)-dimensional regular plas-
mon at long wavelength.

However, this correspondence does not happen for the
Dirac plasma, i.e., theD-dimensional superlattice plasmon
for k ¼ 0 does not become the corresponding (Dþ 1)-
dimensional bulk plasma frequency as one would have

expected intuitively. In particular, ~!ðlÞ
2sðq; k ¼ 0Þ would

agree with the corresponding 3D Dirac plasmon ~!ðlÞ
3 ðqÞ

[in Eq. (7)] only if we define the corresponding effective

3D density to be ~n3 ¼ ð9�g=16Þ1=4ðn2=d2Þ3=4, rather than
the intuitive definition ~n3 ¼ n2=d. For the 1D superlattice
Dirac plasmon, the situation is qualitatively different since

~!ðlÞ
1sðq; k ¼ 0Þ does not depend at all on the carrier density,

and only the following substitution provides a correspon-

dence between ~!ðlÞ
1sðq; k ¼ 0Þ and !ðlÞ

2 ðq ! 0Þ: ~n2 ¼
g=ð�d2Þ, which is a constant for all carrier density. This

absence of correspondence between ~!ðlÞ
Dsðk ¼ 0Þ and!ðlÞ

Dþ1

is the direct consequence of the density dependence of the
irreducible polarizability, Eq. (6), (i.e., the density re-
sponse function). In linear response the density response
function should depend linearly on the total density of the
ES as it does for the ordinary parabolic ES. However, for
the Dirac plasma the density response function is given by

� / nðD�1Þ=D. This peculiar density dependence of the
polarizability is a manifestation of the quantum nature of
the Dirac plasma and gives rise to the lack of correspon-
dence between the band-edge plasmon at k ¼ 0 in the

D-dimensional superlattice as obtained by solving Eq. (8)
and the corresponding bulk plasmon in (Dþ 1)-dimension
as given by Eq. (1).
In summary, we have found that the long-wavelength

plasma frequency of a massless Dirac plasma with linear
carrier energy dispersion is nonclassical with an explicit

1=
ffiffiffi
@

p
appearing in the plasma frequency. This is in sharp

contrast with the widespread expectation that the long-
wavelength plasmon is a classical plasma oscillation—in
fact, a massless Dirac plasma has no classical analogy. We
have also shown that the long-wavelength plasma mode of
a D-dimensional superlattice of massless Dirac plasma
does not reduce to the corresponding (Dþ 1)-dimensional
bulk plasmon, as one would have expected intuitively. All
of these peculiar results follow from the fact that a massless
Dirac plasma is fundamentally nonclassical since the en-
ergy dispersion E ¼ vp characterizing a system with con-
stant velocity (but variable momentum) simply cannot
happen in classical physics. We believe that our predictions
can be tested in doped graphene layers and multilayers, and
in doped graphene ribbons and multiribbons arrays using
electron scattering [11], light scattering [12], or infrared
[13] spectroscopies. But the real importance of our results
is conceptual as we establish a strange quantum behavior in
the graphene world of a Dirac plasma where the long-
wavelength plasmon is explicitly nonclassical.
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