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Intermolecular interactions in the van der Waals bonded benzene crystal are studied from first prin-

ciples, by combining exact exchange energies with correlation energies defined by the adiabatic connec-

tion fluctuation-dissipation theorem, within the random phase approximation. Correlation energies are

evaluated using an iterative procedure to compute the eigenvalues of dielectric matrices, which eliminates

the computation of unoccupied electronic states. Our results for the structural and binding properties of

solid benzene are in very good agreement with experimental results and show that the framework adopted

here is a very promising one to investigate molecular crystals and other condensed systems bound by

dispersion forces.
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van der Waals (vdW) dispersion forces play an impor-
tant role in determining the physical properties of a variety
of systems—including colloids and assembly of macro-
molecules—as well as of many fundamental processes,
e.g., adhesion of liquids on surfaces [1]. Dispersion forces
have a quantummechanical nature, and they originate from
fluctuations of the electronic charge density that, although
nonpolar on average, may have instantaneous dipole and
higher multipole moments. These long-range interactions
are the dominant contribution to vdW forces for nonpolar
fragments, e.g., for molecules such as benzene or methane.
In the case of dipolar molecules, for example, water, vdW
forces also have contributions from orientation and induc-
tion terms [2].

Theoretical descriptions of vdW dispersion forces date
back to London [3] and successful theories for planar
surfaces have been derived by Lifshitz [4]. However, it is
only in recent years that nonempirical, quantum mechani-
cal calculations of dispersion forces have appeared in the
literature [5–11]. Accurate evaluations are very challeng-
ing [12] due to open issues in describing long-range corre-
lation energies present in many ab initio theories, and to
demanding computational requirements. The local density
approximation (LDA) and generalized gradient approxi-
mation (GGA) to density functional theory (DFT) do not
correctly describe the asymptotic behavior of dispersion
interactions as a function of distance. Within DFT,
progress in computing vdW forces has been recently re-
ported by using nonlocal density functionals [6] and, for
atoms and simple molecules, by computing so-called C6
coefficients from LDA and Perdew-Burke-Ernzerhof
(PBE) wave functions [11]. Quantum chemistry tech-
niques, e.g., Møller-Pleset perturbation theory and the
coupled-cluster method, can describe long-range correla-
tion effects. For example, studies of noble gas solids using
a coupled-cluster approach yield cohesive energies and
lattice constants within a few percent of the experiment
[5]. However, applications of these quantum chemistry

techniques to more complex systems, e.g., molecular crys-
tals, are computationally very demanding and have been
attempted only by using potentials fitted to computed gas-
phase data [9].
In this Letter we show that an accurate and efficient

description of the physical properties of molecular crystals
bound by dispersion forces can be obtained from first
principles, by computing correlation energies via direct
evaluation of the electronic density response function.
We report results for the physical properties of the benzene
crystal—a prototypical vdW-bonded system—in very good
agreement with experiments. Thus far, long-range correla-
tions of the benzene crystal have been approximated either

by empirical R�6 atomic pair potentials (even though there
are several known cases for which such potentials predict
qualitatively wrong asymptotic behavior of dispersion in-
teractions [13,14]) or by using quantum-chemistry-derived
pairwise dispersion potentials [9,15–17].
We employed the so-called adiabatic connection

fluctuation-dissipation theorem [18] (ACFDT) to compute
correlation energies, and a recently developed technique
[19,20] to efficiently evaluate eigenvalues and eigenvectors
of dielectric matrices. Calculations of correlation energies
within the ACFDT have been reported for several systems,
including jellium [21], isolated molecules [22,23], com-
pact solids [24,25], layered materials [26], and noble gas
crystals [27], and the overall good agreement with experi-
ments indicates that the ACFDT based on either LDA or
GGA is a promising approach to describe dispersion
forces. However, the high computational cost involved in
the standard implementations of this formalism has so far
prevented its application to molecular crystals and other
complex systems.
Within the ACFDT and the random phase approxima-

tion (RPA), the correlation energy is expressed as a func-
tion of the symmetrized dielectric matrix defined by

~�G;G0 ðq; i!Þ ¼ jqþGj
jqþG0j �G;G0 ðq; i!Þ. In terms of eigenmodes
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of ~�, the correlation energy is given by [28,29]

ERPA
c ¼ 1

2�Nq

Z 1

0
d!

X
q

X
j

flog½~�jðq;i!Þ�� ~�jðq;i!Þþ1g;

(1)

where ~�jðq; i!Þ denotes the jth eigenvalue of ~�. Within a

plane wave (PW) representation of the electronic states, the
computational workload to evaluate ~� scales as NvNcN

2
pw,

where Nv and Nc are the number of valence and conduc-
tion bands, andNpw is the size of the PW basis set. AsNc is

roughly equal to Npw � Nv, the standard implementation

scales as NvN
3
pw. Furthermore ~�ðq; i!Þ needs to be diago-

nalized in order to obtain the trace of logð~�Þ.
In our calculations, we have replaced the direct diago-

nalization of the ~� matrix with an iterative procedure to
obtain its eigenmodes; we call such a procedure ‘‘projec-
tion of dielectric eigenpotentials’’ [19,20]. The action of ~�
on any arbitrary potential is obtained using density func-
tional perturbation theory [30], thus eliminating the need to
compute any unoccupied single particle electronic states.
The cost to compute the eigenvalues of ~� is reduced to
N2

vN
2
pw, making correlation energy calculations for systems

with large basis sets much more affordable [19].
As a benchmark (not shown) we first applied the algo-

rithm described above to the calculation of the exchange-
correlation energy of bulk silicon, and we found results in
excellent agreement with those obtained from a standard
approach [25]. We then computed the bonding properties
of the benzene crystal by expressing its total energy as

EEXX=RPA
tot ¼ ðEDFT

tot � EDFT
xc Þ þ EEXX

x þ ERPA
c ; (2)

where the terms on the right-hand side are the DFT total
energy, DFT exchange-correlation energy, the exact ex-
change, and the RPA correlation energy, respectively.
Although RPA exactly describes long-range correlations
[31], which account for vdW interactions at long distance,
it generally overestimates short-range correlations due to
the lack of an exchange-correlation kernel. The RPA cor-
relation energy with short-range corrections, referred to as

RPAþ [31,32], is given by EEXX=RPAþ
tot ¼ EEXX=RPA

tot þ
Ecorr
sr , where Ecorr

sr is defined as the energy difference be-
tween ELDA

c (EGGA
c ) and the parametrized RPA correlation

energy in the LDA (GGA) form. DFT calculations were
carried out with the PWSCF package [33], at selected unit
cell volumes. We used plane wave basis sets with a kinetic
energy cutoff of 70 Ry, norm-conserving pseudopotentials,
and both LDA/Perdew-Zunger [34] and GGA/PBE [35]
exchange-correlation functionals. At each fixed volume,
the internal geometry of the four nonequivalent monomers
was fully relaxed until all ionic forces were less than

0:03 eV= �A.
The integration in imaginary frequency domain [see

Eq. (1)] was carried out by 10-point Gauss-Legendre quad-
rature in the range of u 2 ½0; 1�, where u ¼ ð1þ
!=!0Þ�1, with!0 ¼ 1 Hartree [36]. The eigenmode sum-

mation was evaluated by truncating j at a finite N� and
fitting the correlation energy to ERPA

c ðN�Þ ¼ ERPA
c ð1Þ þ

�=N� þ �=N2
� for a chosen range of N�.

We have checked the convergence of our results with
regard to (1) the energy cutoff for the plane wave basis
(Ecut), (2) the number of k points in the Brillouin zone of
the solid phase (Nk) and the supercell size for the gas-phase
molecule (a), and (3) the range of N� used in evaluating
ERPA
c . Ecut ¼ 70 Ry is sufficient to converge the difference

between total energy of the solid and gas phase within a
few tenth of kJ=mol (tests were conducted up to 120 Ry). A
2� 2� 2 Monkhorst-Park grid of k points for the solid

and a fcc supercell with size a ¼ 15:875 �A for the isolated
gas molecule yield converged values of ðEDFT

tot � EDFT
xc Þ

within 0:1 kJ=mol per molecule. In the calculation of the
EXX energy, the divergence in the summand for the ex-
change matrix element was integrated by the Gygi-
Baldereschi scheme [37]. EEXX

x was found to depend on
the total number of k points, according to EEXX

x ðNkÞ ¼
EEXX
x ð1Þ þ A=Nk, and we obtained EEXX

x ð1Þ by extrapo-
lating from values calculated using k grids of 2� 2� 2
and 4� 4� 4 [38]. For gas-phase calculations, a Coulomb
cutoff technique [39] was employed both in the EXX and
in the projection of dielectric eigenpotentials computa-
tions, in order to remove spurious interactions between
neighboring cells. As expected, relative values of ERPA

c at
different densities converge much faster, with respect to
N�, than absolute values. The error from the truncation of
N� to 500 eigenmodes is estimated to be within 1% for the
equilibrium lattice constants and about 5 kJ=mol for the
cohesive energy. It is interesting to note that the inclusion
of only 10 eigenmodes per monomer is sufficient to re-
cover more than 80% of the difference in correlation
energy between the solid and the gas phase. However,
one needs to include about 500 eigenmodes to accurately
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FIG. 1 (color online). Relative cohesive energy per monomer
for the benzene crystal as a function of the relative density
�=�exp with �exp ¼ 8:66 nm�3 [44]. The solid lines are fitted

to the third-order Birch-Murnaghan equation of state. We varied
the crystal volume by isotropically scaling the lattice parameters
measured from high resolution powder diffraction experiments
at 4.2 K [44] (Pbca orthorhombic cell with a ¼ 7:355 �A, b ¼
9:371 �A, and c ¼ 6:700 �A).
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describe the curvature of the benzene binding curve and
thus obtain the equilibrium lattice constant to the accuracy
reported here (an accurate comparison between gas- and
solid-phase eigenmodes will be reported elsewhere).

Our results for the binding curve of the benzene crystal
are presented in Fig. 1 together with those of LDA and
GGA/PBE calculations and compared to experiments in
Table I. LDA yields an equilibrium density about 14%
larger than in experiments, while the cohesive energy
(�57 kJ=mol) is close to experimental values, extracted
from the measured heat of sublimation [40], and corrected
for temperature effects and zero point energy [41] (see
Table I). On the other hand, PBE predicts an equilibrium
density about 24% smaller than in experiments and se-
verely underbinds the crystal. These results are in close
agreement with those previously reported in Ref. [42]
(LDA) and [16] (PBE).

The good agreement between LDA and experiments for
the binding energy originates from error cancellations, as
indicated by the comparison of exchange and correlation
energies between LDA and EXX/RPA (see Fig. 2): not
only do the absolute values differ by a few Ry but also the
energy variation as a function of the lattice constant is
substantially overestimated (underestimated) in the LDA
exchange (correlation) energies. The sum of the two parts
(ELDA

xc ) shows instead much smaller but still appreciable
(�20%) deviation from the EXX/RPA curve.

Compared to LDA, PBE exchange and correlation en-
ergies as a function of the lattice constant are in better
agreement with EXX/RPA results (Fig. 2). We note that for
the benzene crystal the variation in the RPA correlation
energy is about the same order of magnitude as that in the
EXX energy, similar to weakly bound hexagonal boron
nitride layers [26], and unlike the case, e.g., of bulk Si or
NaCl in which the EXX energy dominates [25] over the
correlation energy.

The equilibrium density �0 determined from EXX/RPA
is much improved over the LDA or PBE results. The
cohesive energy from EXX/RPA is smaller than in experi-
ments by a few kJ=mol. The inclusion of short-range
corrections (EXX=RPAþ ) shifts the binding curve up
by about 2 kJ=mol, while the equilibrium lattice parame-

ters increase by less than 1%. A larger energy difference
between RPA and RPAþ was found in the case of noble
gas solids (about 10%–20%) [27]. The bulk modulus B0

from EXX=RPAþ or EXX/RPA is close to the estimated
experimental value [42], and much smaller than the LDA
value.
In a recent work on cohesive energy curves of noble gas

solids [27], it was shown that EXX/RPA results from PBE
ground states show overall similar but slightly better agree-
ment with experiments than do those from LDA ground
states, with the latter yielding smaller cohesive energies
and larger lattice constants. We found the same trend for
the benzene crystal: EXX/RPA binding curves calculated
from PBE ground states are very similar to those from LDA
ground states (see Fig. 1), but the predicted cohesive
energy is increased by about 3 kJ=mol, in better agreement
with experiments. We also checked the dependence of the
cohesive energy on the equilibrium atomic positions by
performing EXX/RPA (PBE) calculations on the LDA and
PBE optimized geometries. We found that the cohesive
energies differ by less than 0:05 kJ=mol.
Finally we briefly compare our results with those ob-

tained from pair potentials derived from atomic data. We
used the functional proposed by Grimme [43] and found a
cohesive energy in very good agreement with experiments.
However the equilibrium density is overestimated by 10%,
similar to the LDA case.
In summary, we have presented a first principle study of

the structural and binding properties of the benzene crystal
using the ACFDT to obtain RPA correlation energies. The

TABLE I. Calculated equilibrium density �0=�exp, cohesive
energy Ecoh, and bulk modulus B0 of the benzene crystal from
LDA, EXX/RPA (LDA), PBE, and EXX/RPA (PBE), respec-
tively (see text). Experimental cohesive energy is from measured
heat of sublimation (43–47 kJ=mol) [40], corrected for tempera-
ture effects (2 RT ¼ 4:2 kJ=mol at 250 K) and zero point energy
(2:8 kJ=mol) [41].

LDA EXX/RPA

(LDA)

PBE EXX/RPA

(PBE)

Exp.

�0=�exp 1.14 1.01 0.76 1.00 1

Ecoh (kJ=mol) 57.00 44.00 9.60 47.00 50–54

B0 (GPa) 12.00 6.90 1.40 7.50 �8 [42]
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FIG. 2. Exchange and correlation energies per monomer for
the benzene crystal as a function of the scaling ratio of lattice
constants. LDA (PBE) and EXX/RPA results are shown by
dashed and solid lines with circles, respectively.
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eigenvalues of the dielectric matrix were obtained by an
iterative procedure that avoids direct matrix diagonaliza-
tion and calculation of electronic empty states, thus mak-
ing it scalable to systems with a large number of atoms.
Our framework does not necessitate the separation of the
condensed system into fragments, and it does not rely on
the choice of any reference system, unlike most of the
dispersion-augmented DFT methods, or on the transfer-
ability to the solid phase of pair potentials computed for the
gas phase. Our results are in very good agreement with
experiments and indicate that the approach adopted here is
a very promising one to investigate molecular crystals
bound by dispersion forces, as well as self-assembled
monolayers on metallic surfaces.
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