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Energy transfer to acoustic phonons is the dominant low-temperature cooling channel of electrons in a

crystal. For cold neutral graphene we find that the weak cooling power of its acoustic modes relative to

their heat capacity leads to a power-law decay of the electronic temperature when far from equilibrium.

For heavily doped graphene a high electronic temperature is shown to initially decrease linearly with time

at a rate proportional to n3=2 with n being the electronic density. The temperature at which cooling via

optical phonon emission begins to dominate depends on graphene carrier density.
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Introduction.—Energy exchange between the electrons
in nanoscale electronic devices and their environment is a
key issue in the design of electronic circuits and will play a
role in any future graphene-based electronics [1,2]. The
dominant electronic cooling mechanism in nearly any solid
state environment is energy transfer to phonons. Energy
relaxation in a graphene sheet is dominated by transfer to
the acoustic and optical phonon modes of its two-
dimensional honeycomb lattice and to the optical phonon
modes of its substrate [3,4]. In this Letter we address
electronic energy relaxation in graphene with a focus on
the intrinsic cooling channel provided by the acoustic
phonons.

Optical measurements are a particularly useful probe of
energy transfer between electrons and phonons and have
been employed in the past in studies of electronic cooling
in quantum wells [5]. Similar measurements were recently
performed on epitaxial graphene samples [6,7]. In a typical
measurement electrons are excited to high energies using
an optical pulse. The relaxation process of the hot electrons
is then monitored using differential transmission spectros-
copy. Although transport measurements do in principle
provide an alternate way of studying interactions between
electrons and phonons [3], the resistivity contribution from
acoustic phonons in typical graphene samples is much
smaller than the elastic-scattering residual resistivity con-
tribution [8]. Transport is therefore relatively insensitive to
the electron-phonon coupling strength. Even for suspended
graphene samples in which transport is nearly ballistic,
quantum resistance dominates over the phonon induced
resistance [9]. On the contrary, cooling of hot Dirac qua-
siparticles is entirely due to phonons.

Guided by experiment [6,7] we assume that e-e inter-
actions thermalize the system throughout the relaxation
process. Given the lattice temperature TL and the elec-
tronic density n, the cooling process is then characterized
by a single time dependent function, the electronic tem-
perature TeðtÞ. The time dependent chemical potential �
depends on Te and n and is determined by the conservation
of the number of particles. As the hot electrons equilibrate,

the electronic temperature decreases, approaching its equi-
librium value TL.
A unique situation arises for graphene in the neutral

regime Te � �. In a typical semiconductor this nondegen-
erate regime is reached only at high temperatures. In nearly
neutral graphene, on the other hand, this regime is accessed
at nearly all temperatures of interest. We find that when
TL � Te & 180 K the electronic temperature satisfies a
power-law decay law,

TeðtÞ ¼ T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=�0 þ 1

p ; (1)

with a characteristic time

�0 ¼ 424

D2T2
0

�s: (2)

Here T0 is the initial temperature of the electrons and D is
the screened deformation potential measured in eV [10].
Hereafter we use @ ¼ 1 and measure all temperatures in
meV. Transport measurements have been able to bound the
value of D between 10 and 50 eV; however, more precise
limits on this important parameter have remained elusive
[9]. We propose that Eq. (1) be used to obtain an accurate
value of D from experiment.
This slow low-Te cooling of neutral-regime Dirac quasi-

particles differs markedly from the very fast cooling ob-
served when Te is high. Recent experimental [6,7,11] and
theoretical [12] work has demonstrated that very hot elec-
tron plasmas (Te � several hundred meV) cool signifi-
cantly after several picoseconds. We find that low tem-
perature cooling is slower by more than 3 orders of
magnitude.
Theory of temperature dynamics.—The assumption of

rapid thermalization implies that

@tTe ¼ Q=C; (3)

where C ¼ @Te
E is the electronic heat capacity,Q ¼ @tE is

the electronic cooling power [13], and E is the energy
density of the system. Using the Boltzmann equation we
find that
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Q ¼ @t
X
k�

�k�f
�
k ¼ X

k�

�k�Sphðf�kÞ; (4)

where

Sphðfk�Þ¼�X
p�

½f�kð1�f�p ÞWk�!p��fk�!p�g� (5)

is the collision integral. Here � ¼ v; c labels the valence
and conduction bands whose energies are �vgk with vg

being graphene’s band velocity. The occupation of each
band is given by the time dependent Fermi distribution
function f�k ¼ fð�k�; TeðtÞ; �ðtÞÞ and
Wk�!p� ¼ 2�

X
q

w��
q ½ðNq þ 1Þ�k;pþq�ð���kp �!qÞ

þ Nq�k;p�q�ð���kp þ!qÞ� (6)

is the transition rate between state k� and state p�. The
energy exchanged with the phonon heat bath in the tran-

sition is ���kp ¼ �k� � �p�. In Eq. (6) Nq ¼ Nð!qÞ is the
Bose distribution function evaluated at the phonon energy
!q. For acoustic phonons the transition matrix element is

w��
q ¼ D2q2ð1þ s�� cos�Þ=4	!q. Here s�� ¼ 1 for in-

traband transitions and s�� ¼ �1 for the interband ones,

� ¼ �k � �p is the relative angle between the incoming

and outgoing momenta, and 	 is the mass density of

graphene. For optical phonons with energy !0, w
��
q �

g2 where g � 2vg=a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	A!0

p
with a ¼ 1:42 �A and A

being the area of the graphene sheet [14].
We first consider Qa the energy transfer to the acoustic

phonon bath which is accurately described by the linear
energy dispersion !q ¼ cq. It is instructive to separate the

energy transfer into a loss due to spontaneous emission,
Qspont, and a gain due to induced transitions, Qind.
Straightforward manipulations of (4) lead to

Qind ¼ ��D2

2	c

X
k�p�

���kp ð1þ s�� cos�Þðf�k � f�p Þ

�X
q

qNq�k;pþq�ð���kp �!qÞ: (7)

To evaluate Qa we exploit the large mismatch between vg

and the sound velocity c and evaluate Qa to leading order
in c=vg � 1. In the limit c=vg ! 0 the scattering is elas-

tic, only intraband transitions are allowed, and there is no
energy loss. To leading order in c=vg interband scattering

remains negligible and we can approximate jpj by jkj
when performing the sum over q in Eq. (7). In this way
we find that to Oðc=vgÞ4

Q ind ¼ D2TL

	v2
g

Z k3dk

2�
½fck þ ð1� fvk Þ�: (8)

Similar steps yield Qspont and the total energy loss

Q a ¼ � D2

	v2
g

ðTe � TLÞ
Z k3dk

2�
½fck þ ð1� fvk Þ�: (9)

As expected, the net energy loss vanishes when the elec-
tronic temperature reaches the lattice temperature.
Interestingly, to leading order in c=vg the energy loss is

independent of the sound velocity. Because of the absence
of interband transitions the cooling power from electrons in
the conduction band and from holes in the valence band are
simply additive.
As is evident from Eqs. (8) and (9), the energy gain due

to the induced transitions is negligible compared to Qspont

at high temperatures when Te � TL. However, as the
system cools, the difference between Qind and jQspontj
decreases, vanishing in equilibrium. The vanishing of Q
in equilibrium is assured by the detailed balance condition
reflected by the collision integral expression, Eq. (5).
The cooling power due to the intrinsic optical modes is

easily estimated when the electron-phonon coupling is
approximated by a constant g and phonon dispersion is
neglected. Setting the phonon energy to !0 it follows from
Eqs. (4)–(6) that

Q o ¼ g2!4
0

ð2�v2
gÞ2

½Neð!0Þ � NLð!0Þ�F ðTe;�Þ; (10)

where

F ðTe;�Þ ¼
Z 1

�1
dxjxðx� 1Þj½fð½x� 1�!0Þ � fðx!0Þ�:

(11)

Here Ne and NL are the Bose distribution functions eval-
uated at the temperatures Te and TL, respectively, and the
factor jxðx� 1Þj originates from the electronic joint den-
sity of states. For neutral graphene F � 1=6 when Te �
!0. The dominant optical phonon bath in suspended gra-
phene is likely intrinsic. In unsuspended samples scattering
by substrate phonons may introduce additional optical
modes which are considerably less energetic [3]. We focus
below on the energy loss due to acoustic phonons and
comment on the role of the intrinsic optical phonon modes
only at the end of this Letter.
Neutral limit.—First we consider the neutral regime for

which�ðtÞ � TeðtÞ. If the equilibrium value of the chemi-
cal potential is significantly smaller than the lattice tem-
perature, the system remains in the neutral regime
throughout the entire relaxation process; otherwise the
system will eventually exit the neutral regime as it ap-
proaches equilibrium.
The energy exchanged in a typical transition is Te,

implying a momentum transfer of Te=vg. The typical

phonon energy is then Tec=vg, justifying the quasielastic

approximation for the scattering by acoustic phonons for
all values of the electronic temperature. This situation is in
marked contrast with the typical scenario in metals in
which e-ph scattering becomes highly inelastic below the
Bloch-Grüneisen temperature.
In the neutral limit Eq. (9) for Qa can be further sim-

plified by setting � to zero in the integral to obtain a value
proportional to T4

e . Combining this result with Eq. (3) and
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noting that the energy density per spin and valley in neutral
graphene is E ¼ 3
ð3ÞT3

e=2�v
2
g, where 
 is the Riemann

zeta function, we find that

@tTe ¼ ��T2
e ðTe � TLÞ; (12)

where � ¼ 7�4D2=540
ð3Þ	v4
g ¼ 1:18�

103D2 ðmeV2 sÞ�1 with the deformation potential mea-
sured in eV. Both the cooling power and the heat capacity
decrease as Te approaches TL. Because the former decrease
is faster, the rate of temperature decrease slows. Far from
equilibrium when Te � TL, Eq. (12) is solved by (1). The
temperature decays as a power law with a characteristic
time of �0 ¼ 1

2�T
2
0 . The simple relationship between Te

and the energy density E combined with Eq. (1) yields

E ðtÞ � E0ðt=�0 þ 1Þ�3=2; Te � TL; (13)

where E0 is the initial energy density of the system. Like
the electronic temperature, the energy density decays to
equilibrium as a power law when the system is far from
equilibrium.

Near equilibrium, when Te * TL, we linearize Eq. (12)
with respect to Te � TL to find that the electronic tem-
perature decays exponentially to its equilibrium value
with a characteristic time given by �L ¼ 1=�T2

L ¼
848=D2T2

L �s.
Our results for the neutral limit are valid to Oð�=TeÞ2

since the particle hole symmetry of the system implies that
both Qa and E are even functions of �=Te.

Highly doped limit.—We now turn to study the equili-
bration of hot electrons in the doped regime for which
�ðtÞ � TeðtÞ. In this regime we use the Sommerfeld ex-
pansion to approximate Qa and C and obtain

@tTe ¼ ��d

Te � TL

Te

; (14)

where �d ¼ 3D2�3F=4�
2	v4

g ¼ 0:133D2n3=2 meV=ns

with n being measured in units of 1012 cm�2. Far from
equilibrium the high electronic temperature initially de-
creases linearly with time at an energy rate given by �d.
Near equilibrium Te approaches TL exponentially at a rate
of �d=TL.

The doped regime resembles the typical metallic case in
that the quasielastic approximation breaks down at low
temperatures when the electronic temperature is below
the Bloch-Grüneisen temperature TBG ¼ 2ckF. Therefore
our results for the doped regime describe the entire equili-
bration process for systems in which TL > TBG. However,
for cold doped graphene our results are valid only when
TeðtÞ> TBG.

General solution.—In the general case, when �ðtÞ �
TeðtÞ, the time evolution of the electronic temperature
and chemical potential follow from two coupled differen-
tial equations. The first equation

0 ¼ �2vg@tð1=TeÞIðþÞ
1 þ @tð�=TeÞIð�Þ

0 (15)

is obtained from the number equation @tn ¼ 0 and ex-
presses the conservation of the number of particles
throughout the relaxation process. Here

Ið�Þ
n 	

Z kndk

2�
½fck 
 ð1� fvk Þ�: (16)

The second differential equation @tE ¼ Qa can be written
using Eq. (9) as

�3vgTe@tð1=TeÞIð�Þ
2

þ2Te@tð�=TeÞIðþÞ
1 ¼� D2

	v2
g

ðTe�TLÞIð�Þ
3 : (17)

We have solved the coupled differential equations (15)
and (17) numerically for various values of densities. The
evolution of Te is plotted in Fig. 1 for TL ¼ 1 meV, T0 ¼
50 meV, andD ¼ 20 eV. Clearly the equilibration process
is faster for doped systems.
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FIG. 1 (color online). Equilibration of the electronic tempera-
ture. The evolution of the electronic temperature Te is plotted for
electronic densities of (top to bottom) 0.02, 0.05, 0.1, 0.2, 0.3,
and 0:4� 1012 cm�2. The lattice temperature is 1 meV and the
deformation potential is assumed to be 20 eV. The solid line
corresponds to the equilibration of Te in a neutral system.
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FIG. 2 (color online). Equilibration of the chemical potential.
As Te decreases (see Fig. 1), the chemical potential increases to
preserve the electronic density.
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The corresponding evolution of the chemical potential
for the different electronic densities is plotted in Fig. 2. The
conservation of particle number throughout the equilibra-
tion process forces j�j to increase with time.

Discussion.—The small low-temperature cooling power
of the neutral graphene electronic system is due to both
the small joint density of states for electronic transitions
and the small energy of acoustic phonons at typical tran-
sition momenta. From dimension analysis of Q and E and
Eq. (3), we find that the instantaneous energy decay rate
� ¼ j@t lnðEÞj ¼ Q=jEj of a d-dimensional gapless neu-
tral system at zero lattice temperature with conduction and
valence band dispersions �k / ks satisfies

�� Tðd�sþ1Þ=s
e : (18)

Exponential decay of Te and E occurs when � is constant,
i.e., when s ¼ dþ 1. In systems like single layer or bilayer
graphene with s < dþ 1, the cooling rate will decrease as
a power law of the instantaneous temperature when the
system is far from equilibrium.

It is interesting to consider the consequences of this
work on the cooling of bilayer graphene. The evolution
of Te of a gapless 2D system with a parabolic dispersion is
given by @tTe ¼ �~�

ffiffiffiffiffi
Te

p ðTe � TLÞ. However, we do not
expect this relationship to apply precisely in bilayer gra-
phene since the momentum dependence of its energy spec-
trum cannot be described by a single power [15].

Although the main focus in this work has been energy
loss due to acoustic phonons, we emphasize that the ener-
getic optical phonons will play a dominant role in the
cooling of graphene at sufficiently high temperatures. To
estimate the regime for which acoustic phonons dominate
cooling in graphene, we plot Qo=Qa as a function of Te.
We use a simple model in which !0 ¼ 196 meV for both
longitudinal and transverse optical branches. In Fig. 3 we
plotQo=Qa for a neutral graphene sheet for various values

of TL. Surprisingly, the different functional dependencies
of Qo and Qa on TL and Te lead to a nonmonotonic
dependence of Qo=Qa on Te and to the dominance of
Qo near equilibrium at moderate lattice temperatures. As
evident from Fig. 4, the relative cooling power of the
acoustic phonons increases with doping, increasing the
maximum temperature at which they are dominant.
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FIG. 3 (color online). The energy loss due to optical phonons
divided by the energy loss do to acoustic phonons for neutral
suspended graphene is plotted versus the electronic temperature
for lattice temperatures of (bottom to top) 1, 10, 20, and 30 meV.
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FIG. 4 (color online). The analog of Fig. 3 for a doped system
with n ¼ 1013 cm�2.
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