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We explore the Matsubara quasiparticle fraction and the pseudogap of the two-dimensional Hubbard

model with the dynamical cluster quantum Monte Carlo method. The character of the quasiparticle

fraction changes from non-Fermi-liquid, to marginal Fermi liquid, to Fermi liquid as a function of doping,

indicating the presence of a quantum critical point separating non-Fermi-liquid from Fermi-liquid

character. Marginal Fermi-liquid character is found at low temperatures at a very narrow range of doping

where the single-particle density of states is also symmetric. At higher doping the character of the

quasiparticle fraction is seen to cross over from Fermi liquid to marginal Fermi liquid as the temperature

increases.
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Introduction.—The unusual properties of the hole-doped
cuprate phase diagram, including a pseudogap (PG) at low
doping, and unusual metallic behavior at higher doping
have lead many investigators to propose that there is a
quantum critical point in the cuprate phase diagram at
optimal doping. Different investigators argue that the PG
is related with the establishment of order [1–4], where the
optimal doping is in the proximity of the quantum critical
point (QCP) associated with this order [2]. Other investi-
gators argue that the QCP is located at the transition from a
non-Fermi-liquid (NFL) to Fermi-liquid (FL) ground state
without the establishment of order in the PG region [5].

In previous work employing cluster extensions of the
dynamical mean field, a PG region was found at low
doping in the two-dimensional Hubbard model. It is char-
acterized by a narrow gaplike feature in the single-particle
density of states, a suppression of the spin susceptibility,
and a self energy of NFL character [6–8].

In this Letter, we employ significantly larger clusters
than most previous studies, which affords us greater mo-
mentum resolution. We investigate the single-particle
properties of the two-dimensional Hubbard model with
the dynamical cluster approximation (DCA) [9]. We find
further evidence for a QCP and are able to determine its
character as the terminus of a marginal Fermi-liquid
(MFL) region, which separates a NFL PG region at low
doping from a FL region at high doping. We present a
comparative discussion of a few existing scenarios for
quantum criticality in the context of our results.

Formalism.—We consider a 2D Hubbard Hamiltonian

H ¼ �X
hiji�

tðcyi�cj� þ H:c:Þ þ �
X
i�

ni� þU
X
i

ni"ni#; (1)

where t is the hopping matrix, cyi�ðci�Þ is the creation

(annihilation) operator for electrons on site i with spin �,
and U is the on-site Coulomb repulsion which is taken to
be three quarters of the bandwidthWð¼ 8tÞ. The hopping t
is restricted to nearest neighbors hiji.
We employ the DCA with a quantum Monte Carlo al-

gorithm as the cluster solver. The DCA is a cluster mean-
field theory which maps the original lattice model onto a
periodic cluster of size Nc ¼ L2

c embedded in a self-
consistent host. Spatial correlations up to a range Lc are
treated explicitly, while those at longer length scales are
described at the mean-field level. However, the correlations
in time, essential for quantum criticality, are treated ex-
plicitly for all cluster sizes. To solve the cluster problemwe
use the Hirsch-Fye quantum Monte Carlo method [6,10]
and employ the maximum entropy method [11] to calculate
the real-frequency spectra.
A number of the normal state anomalies in the cuprates

are describable by a MFL in proximity to a quantum
critical point at finite doping [4]. The imaginary part of
the MFL self energy has the form �00

MFLð!Þ ¼
��maxðj!j; TÞ. In contrast the imaginary part of the FL
self energy has the form�00

FLð!Þ ¼ ��maxð!2; T2Þwhich
would be expected to be valid at large doping and low
temperatures. In the doping region beyond but near the
QCP, the single-particle properties of the model are ob-
served to cross over from FL to MFL as the temperature
crosses TX and the frequency !x, we find that this may be
fit with the form

�00
Xð!Þ ¼

���!x maxðj!j; TÞ for j!j>!x orT > TX

��maxð!2; T2Þ for j!j<!x andT < TX
:

(2)

Causality requires that �> 0, and the integrals over these
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forms for the self energy are cutoff at !c which is of the
order of the bandwidth Wð¼ 8tÞ.

To compare our Matsubara frequency results to these
forms of the real-frequency self energy [12], we transform
each of these forms to Matsubara frequency using the
transform of the non-Hartree part of the self energy
��ði!nÞ ¼ �R

d!�00ð!Þ=ði!n �!Þ and then evaluate

Z0ðkÞ ¼ ð1� Im�ðk; i!0Þ=!0Þ�1, where !0 ¼ �T is
the lowest Fermion Matsubara frequency. For a well-
behaved self energy, limT!0Z0ðkÞ ¼ ZðkÞ is the quasipar-
ticle renormalization factor. For example, for the MFL, we
find [12]

�MFLðk; i!0Þ
!0

¼ �

�

�
ln

�ð�2 þ 1ÞT2

�2T2 þ!2
c

�
� 2

�
tan�1 1

�

�
: (3)

While for the FL, we find

�FLðk; i!0Þ
!0

¼ �2�T

�

�
!c

T
þ 0:066 235� �tan�1 !c

�T

�

(4)

when T < !c. The crossover form is more complicated,
but can be constructed from the same integrals used to
derive Eqs. (3) and (4)

�
� �

2�

�
Im�ði!0Þ

!0

¼ T�ðTX � TÞ
�
!x

T
þ 0:066 23

�
�
0:308

!x

�T
þ �tan�1 !x

�T

�
�!x

2T

� ln

�
!2

x þ �2T2

ð1þ �2ÞT2

��

þ!x

�
0:0981þ 1

2
ln

�
!2

c þ �2T2

ð1þ �2ÞT2

��
:

(5)

The parameters, �, !c, TX, and !x are determined from a
fit to the quantum Monte Carlo data.

Results.—We will present results for the model with
U ¼ 1:5 with bare bandwidth W ¼ 2 setting the energy
unit, and a 4� 4 cluster. With this choice of U=t and
cluster we are able to access low temperatures T * 0:01
before the average sign of the sampling weight falls below
0.05. The low-energy scales in the problem are the anti-
ferromagnetic exchange energy J near half filling, the PG
temperature T� in the PG region, and the effective Fermi
energy TX at higher doping. From the analysis described
previously [13], we find that Jeff � 0:11 for N ¼ 0:95 and
N ¼ 1. The energy scales T� and TX are extracted from fits
to the data presented below. It is important to note that in
each of these fits, we include data for T � Jeff .

The Matsubara quasiparticle fraction is calculated with
k on the Fermi surface (FS) defined by the maximum
jrnðkÞj along the (1, 1) and (0, 1) directions. The Fermi
surface identified using the spectral function Aðk; ! ¼ 0Þ
[14] is slightly different than that identified using jrnðkÞj.

Nevertheless, for N > 0:85, the quasiparticle weight Z !
0 everywhere on both Fermi surfaces (and shows a similar
anisotropy on both), and so our conclusions do not vary
depending on whether we use jrnðkÞj or Aðk; ! ¼ 0Þ to
identify the FS. We will present detailed results and analy-
sis for the (0, 1) direction only as we are interested in the
crossover from PG to FL behavior, and the PG is stronger
along the (0, 1) direction. Z001 is shown in the main panel
in Fig. 1 for U ¼ 1:5 in units where W ¼ 2 for different
fillings.
The low temperature Matsubara quasiparticle data

changes character as the filling N increases through N ¼
0:85. The data for N > 0:85 has negative curvature at all T.
Whereas the data for N < 0:85 has negative curvature at
high T, a region of weak positive curvature is found at
lower T. The change in curvature of the low temperature
data for N < 0:85 is easily understood as a crossover to a
FL region. In a FL at zero temperature Z0FLð0Þ ¼ 1=ð1þ
2�!c=�Þ while for low T, Z0FLðTÞ � Z0FLð0Þð1þ
3:099�Z0FLð0ÞTÞ. Since �Z0FLð0Þ> 0, Z0FLðTÞ at low T
has a finite intercept and a linear region with positive initial
slope indicative of FL formation. The next correction, of
order T2, is small for Z0FLð0Þ � 0:6 so that Z0FLðTÞ is a
nearly linear function when fit to the low T data. On the
other hand, the MFL always has negative curvature, as can
be inferred from an expansion of Eq. (3) to second order in
T. So at the transition between FL and MFL, a region of
positive curvature is found at T � TX. The data for N <
0:85 is well fit by the crossover form posed above, but is
poorly fit by a FL form over the fitting region (see, e.g., the
solid line fit to the N ¼ 0:75 data). When the data at N ¼
0:85 is fit with the crossover form for the Z0XðTÞ, the fitting
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FIG. 1 (color online). Matsubara quasiparticle fraction Z0ðkÞ
versus temperature T evaluated with k on the Fermi surface
along the (0,1) direction for different fillings N when U ¼ 1:5
and the bandwidth W ¼ 2. The lines represent fits in the region
T < 0:3 to either the MFL form, Eq. (3), for N � 0:85 or the
crossover form (X), Eq. (5), for N < 0:85. The arrows indicate
the values TX extracted from the crossover fits or T� (cf. Figs. 3
and 4). Inset: The ratio, Z011=Z001, is plotted as a function of
temperature for different fillings.
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routine returns!x ¼ TX ¼ 0 (within the precision of the fit
and data), consistent with the formation of a MFL. So the
solid line shown in the plot is a MFL fit. The MFL fit to the
N ¼ 0:85 data is very good. In fact the quality of this fit
was better than that obtained for any of the fitting forms to
any of the other data sets, despite the fact that the MFL
form only has two adjustable parameters. In order to show
that the conclusions from the above analysis are not spe-
cific to the direction (0, 1), we plot the ratio, Z011=Z001, in
the inset of Fig. 1 as a function of temperature for different
fillings. The ratio is seen to be essentially the same for all
fillings at the QCP, indicating that Z is essentially isotropic
at the QCP, and becomes progressively more anisotropic as
we dope into the PG region. In addition, Z calculated at
k ¼ ð0; �Þ (not shown) is qualitatively the same as that
calculated along the 01 direction on the Fermi surface.
Therefore, the QCP is not due to interpolation nor is it
due to the change of the Fermi wave vector with filling.
Rather, it is due to a dramatic change of the nature of the
self energy for k near the Fermi surface.

The data with N ¼ 0:85 in some other ways is special.
For example, at this filling the low temperature single-
particle density of states (DOS), which is plotted in
Fig. 2 for several fillings, is peaked at zero frequency. At
low energies j!j & Jeff the N ¼ 0:85 DOS is nearly sym-
metric around this point. This is consistent with the obser-
vation of particle-hole (p-h) symmetry in the transport of
the cuprates at optimal doping [5].

In order to characterize the region N > 0:85, the PG
region, we also explored the temperature dependence of
the DOS and the bulk, Q ¼ 0, spin susceptibility of the
cluster, as shown in Fig. 3 and its inset, respectively. We
find a concomitant depression of the low-energy DOS at
temperatures below the peak in the susceptibility. The
suppression of the susceptibility indicates the suppression
of low-energy spin excitations. Z001ðTÞ in this region is

well fit for T > T� (see Fig. 4) by the MFL form, but is
poorly fit by the MFL form for T < T�, as shown in Fig. 1.
The MFL form changes too slowly with decreasing T, due
to the formation of the PG for T < T�.
The relevant temperatures near the QCP, TX and T�, are

shown in Fig. 4. The PG temperature was determined from
the peak in the susceptibility and the initial appearance of
the PG in the DOS as shown in Fig. 3, and TX from the fit
to Eq. (5).
We also explored the effect of larger clusters and U=t;

however, these results are restricted by computational
limitations including, especially, the minus sign problem.
Despite this, some calculations were possible for Nc ¼ 24
site clusters. For the same parameters used above, we find
that the PG temperature T� increases slightly near half
filling. At the critical filling where the Z001ðTÞ is best fit
by a MFL, the p-h symmetry in the DOS at low frequen-
cies remains between N � 0:85 to N � 0:86. Because of
the minus sign problem, we did not have enough low
temperature data to determine TX precisely for clusters
with Nc ¼ 24. We also explored a larger value of U ¼
W ¼ 2 for theNc ¼ 16 cluster with similar limitations. We
find that the PG vanishes at roughly N ¼ 0:78, consistent
with optimal doping in the cuprates [5], and at this filling
the DOS is again p-h symmetric at low energies.
Discussion.—Several different scenarios have been pro-

posed to explain the transition from PG to FL behavior and
the strange behavior seen near optimal doping in the cup-
rates such as the MFL phenomena.
An extension of the bond-solid scenario [2,3,15] is con-

sistent with our results. Here, a bond solid is conjectured to
coexist with the pseudogap in the underdoped region, and
the QCP marks the doping where the transition tempera-
ture to bond order vanishes. We suggest that the NFL
behavior could be due to the scattering of quasiparticles
from bond excitations. For dopings greater than, but near,
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FIG. 2 (color online). The single-particle DOS when U ¼ 1:5,
W ¼ 2, and T ¼ 0:014 29. Note that the low-energy DOS is
roughly symmetric around ! ¼ 0 for the critical filling N ¼
0:85 where Z0ðkÞ fits a MFL form. This is consistent with the
observation of rough particle-hole symmetry in the cuprates in
the proximity of optimal doping [5].
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FIG. 3 (color online). The single-particle density of states in
the pseudogap region for various temperatures with N ¼ 0:95,
U ¼ 1:5, W ¼ 2. Inset: The bulk, Q ¼ 0, cluster susceptibility
for the same parameters. The PG in the DOS begins to develop at
roughly the same temperature T� which identifies the peak
susceptibility.
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the PG region, there would be remnant bond excitations.
The low-energy scale of these excitations will be cut off by
the finite correlation length of the bond order, yielding a
gap to bond excitations. So low-energy quasiparticles may
form a FL, while higher energy ones do not, due to scat-
tering from these bond excitations. In this scenario, the gap
to bond excitations is proportional to TX, which presum-
ably will grow as the bond correlation length falls as the
system is doped away from the QCP. One problem with
this scenario is that it requires gapless bond excitations in
the PG region, but due to the finite size of the cluster there
should be a small gap which scales with the cluster size.

The spectral-weight transfer scenario [5,16] also pro-
vides a consistent interpretation. In a hole-doped Mott
insulator, with doping x ¼ 1� N and large U=t, each
doped hole yields two states immediately above the chemi-
cal potential. One comes from the lower and the other from
the upper Hubbard band. When the system is doped so that
the number of low-energy states (i.e., not including those in
the upper band) above and below the chemical potential are
equal, so that 2x ¼ 1� x or x ¼ 1=3, then p-h symmetry
is obtained. For finite U=t, the critical doping for p-h
symmetry is smaller [5]. Thus this scenario explains the
p-h symmetry of the DOS at the QCP, as found in Fig. 2.

Our results differ from previous extended DCA results
for the t-J model on a Nc ¼ 4 cluster where a FL-FL
crossover, with maximum scattering is found at a critical
point not associated with MFL behavior [17]. It is not clear
whether the model or the method is responsible for these
differences, although note that the spectral-weight transfer
arguments discussed above suggest FL physics for the t-J
model even at small doping [18].

Conclusion.—We investigate the Matsubara quasipar-
ticle fraction on the Fermi surface and the PG of the two-
dimensional Hubbard model. As a function of doping,
Z001ðTÞ changes character. For doping beyond the critical
point, as the temperature is lowered the curvature of
Z001ðTÞ changes from negative to positive. This can be
understood as a change from a MFL to a FL as T falls.

At lower doping, the curvature is negative for all T, in-
cluding T � Jeff , consistent with a NFL state. A PG is also
found in the DOS and the bulk spin susceptibility at lower
doping. At the QCP which separates these two regions, we
find a MFL which is also found for T > T� and T > TX.
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