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Bounds on the exchange-correlation energy of many-electron systems are derived and tested. By using

universal scaling properties of the electron-electron interaction, we obtain the exponent of the bounds in

three, two, one, and quasione dimensions. From the properties of the electron gas in the dilute regime, the

tightest estimate to date is given for the numerical prefactor of the bound, which is crucial in practical

applications. Numerical tests on various low-dimensional systems are in line with the bounds obtained and

give evidence of an interesting dimensional crossover between two and one dimensions.
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In 1979, Lieb [1] planted a landmark in quantum many-
body physics by proving the existence of a lower bound on
the indirect part of the Coulomb interaction. The existence
of such a bound is of immediate relevance to such funda-
mental questions as the stability of matter [2]. For the
purpose of quantitative calculations, on the other hand,
the existence of a bound is not enough—one would wish
it to be as tight as possible. A tighter version of Lieb’s
bound was later derived by Lieb and Oxford [3], and it is
this tighter form, known as the Lieb-Oxford (LO) bound,
which is used as the key constraint in the construction of
many modern density functionals [4,5], which in turn are
used in calculations of the electronic structure of atoms,
molecules, nanoscale systems, and solids.

In connection with recent advances in low-dimensional
physics, it is important to ask whether LO-like bounds exist
and can be formulated also in reduced dimensions, in
particular, since the study of low-dimensional systems to-
day forms a significant part of condensed-matter and ma-
terials physics.

The LO bound [3], in its original form, applies to all
three-dimensional (3D) nonrelativistic, Coulomb-
interacting systems. The bound can be expressed in terms
of the indirect part of the interaction energy [1,3,6]:

Wxc½�� � h�jV̂eej�i �U½n� � �C3

Z
d3rn4=3ðrÞ; (1)

where the electron-electron (e-e) interaction operator is

Coulombic, i.e., V̂ee ¼ P
i>jjri � rjj�1. Its expectation

value is calculated over any normalized many-body wave
function �ðr1; . . . ; rNÞ. nðrÞ is the corresponding density,
and U½n� is the classical Hartree energy. For the prefactor
C3, where the subscript denotes the number of dimensions
D, Lieb originally found CL

3 ¼ 8:52, which was subse-

quently refined by Lieb and Oxford to CLO
3 ¼ 1:68 and

later, numerically, by Chan and Handy to CCH
3 ¼ 1:64 [7].

Recent numerical studies [8,9], as well as modeling of the
prefactor based on its known properties [10], have given
evidence that the bound can be further tightened.
In two dimensions (2D), Lieb, Solojev, and Yngvason

(LSY) [11] showed that

Wxc½�� � �C2

Z
d2rn3=2ðrÞ; (2)

where CLSY
2 ¼ 192

ffiffiffiffiffiffiffi
2�

p � 481 � CLO
3 . For a

D-dimensional system, the bound may be written as

Wxc½�� � �CD

Z
dDrn�ðrÞ; (3)

but we note that the existence of a bound of this form has
been rigorously proven for only 3D and 2D and that the
tightest possible form (i.e., the smallest possible value of
CD) is unknown in all dimensions.
In this Letter, we (i) show that the exponents of n in

Eqs. (1) and (2) are consequences of universal scaling
properties of the e-e interaction, (ii) use this result to
deduce the exponent � of a possible one-dimensional
(1D) bound, (iii) provide an estimate of the prefactor CD

that corresponds to a dramatic tightening of CLSY
2 , smaller

but still significant tightening of CLO
3 , and the first proposal

for C1, (iv) observe unexpected parameter independence
and generality of the bound with respect to the model
chosen for interactions in 1D, and (v) test the 1D and 2D
bounds against analytical and near-exact numerical data
for various low-dimensional systems.
The 1D case, in fact, is subtle because the Coulomb

interaction is ill-defined. Hence, we consider a contact

interaction V̂ee ¼ �
P

i>j�ðxi � xjÞ, with �> 0. The dis-

cussion below on the 1D case refers to this type of inter-
action. However, we consider also a soft-Coulomb

interaction V̂ee ¼
P

i>j½ðxi � xjÞ2 þ a2�, which corre-

sponds to a quasi-1D (Q1D) situation.
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Under homogeneous scaling of the coordinates, r ! �r
(0< �<1) [6], the (DN)-dimensional many-body wave

function scales as �ðr1 . . . rNÞ ! ��ðr1 . . . rNÞ ¼
�DN=2�ð�r1 . . .�rNÞ, preserving normalization. This
yields the number-conserving scaled density nðrÞ !
n�ðrÞ ¼ �Dnð�rÞ. On the other hand, Wxc½�� !
Wxc½��� ¼ �Wxc½��, since both the Coulomb (D ¼
2; 3) and contact (D ¼ 1) interaction and their Hartree
approximations scale linearly. Thus, Eq. (3) becomes

�Wxc½�� � �CD�
Dð��1Þ Z dDrn�ðrÞ; (4)

and consistency between Eqs. (3) and (4) immediately

yields � ¼ �Dð��1Þ, giving � ¼ 1=Dþ 1. For D ¼ 3 and
D ¼ 2 this yields � ¼ 4=3 and � ¼ 3=2, respectively, in
agreement with the LO and LSY bounds. We thus find that,
if a bound of this form exists, its exponent is, in all
dimensions, uniquely determined by coordinate scaling,
without requiring the complicated analysis performed in
Refs. [1,3,11]. For a LO-like bound in 1D, the same scaling
argument suggests the form Wxc½�� � �C1

R
d1rn2ðrÞ,

although the existence of such a bound in 1D is at present
only a conjecture.

The exponent � ¼ 1=Dþ 1 in Eq. (4) is the same as in
the expression of the exchange energy Ex½n� of the homo-
geneous D-dimensional electron gas, which is applied in
the local-density approximation (LDA) [12] to the inho-
mogeneous case. Thus, we can express the right-hand side
of all LO-like bounds in terms of

ELDA
x ½n� ¼ �AD

Z
dDrn�ðrÞ; (5)

where A3 ¼ 34=3��1=3=4, A2 ¼ 25=2��1=2=3, and A1 ¼
�=4 [12]. For ground-state densities, the left-hand side of
Eq. (3) can be written in terms of the full exchange-
correlation energy Exc½n� � Wxc½n� þ Tc½n� � Wxc½n�,
where the inequality follows from the positiveness of the
kinetic-energy part Tc of the correlation energy, and the
density functional Wxc½n� is obtained by evaluating

Wxc½�� with the wave function minimizing h�jT̂ þ
V̂eej�i under the constraint of reproducing the ground-
state density nðrÞ. We can now cast the bound in the form

Exc½n� � �DE
LDA
x ½n�; (6)

where �D ¼ CD=AD. Thus, the tightest possible bound can
be obtained by looking for the maximum value of the
density functional

�D½n� ¼ Exc½n�
ELDA
x ½n� ¼

Ex½n�
ELDA
x ½n� þ

Ec½n�
ELDA
x ½n� (7)

over all possible D-dimensional many-body systems.
Clearly, this maximization cannot be performed in prac-
tice. However, we can make an educated guess as to what
the resulting maximum will be.

First, we note that for 3D, it was shown rigorously that
the constant �3 in Eq. (6) can be replaced by a monotonic
function depending on particle number �3ðNÞ, which as-
signs to all systems with particle number N a common
value �3ðNÞ � �3ðN ! 1Þ � �3, such that a LO-like
bound with �ðNÞ in place of � holds for all systems with
this N [3,10]. The values commonly quoted for �L

3 , �
LO
3 ,

and �CH
3 are actually estimates of �3ðN ! 1Þ. To obtain

the tightest possible universal (N-independent) bound, we
thus take N ! 1.
Second, we may expect that Ex is always relatively

close to ELDA
x , as the particle density n is varied over

different physical systems. Hence, the functional �D½n� is
expected to be largest for systems where the rightmost ratio
in Eq. (7) is largest, i.e., where correlation is largest
relative to exchange. This situation is typical of the ex-
treme low-density limit n ! 0.
Taken together, the rigorous property of a maximum at

N ! 1 and the nonrigorous but reasonable requirement
that n ! 0 suggest that the largest possible value of �3½n�
is obtained for the r3Ds ! 1 limit of the 3D electron gas

(3DEG) with the density parameter r3Ds ¼ 31=3ð4�nÞ�1=3

[13]. This expectation leads to �3 � �3DEG½r3Ds ! 1� ¼
1þ �cðr3Ds ! 1Þ=�xðr3Ds ! 1Þ ¼ 1:9555 [8], where �x
(�c) is the exchange (correlation) energy per electron. We
note that the original LO bound with CLO

3 ¼ 1:68 corre-

sponds to �LO
3 ¼ 2:27, while the present estimate �3 ¼

1:9555 is tighter and consistent with the empirical prefac-
tor obtained by evaluating �3½n� for real systems [8].
We now assume that the above argument about the

maximum of �3 carries over to reduced dimensions. For
the 2D electron gas (2DEG) with r2Ds ¼ 1=

ffiffiffiffiffiffiffi
�n

p
, we have

�xðr2Ds Þ ¼ �4
ffiffiffi
2

p
=ð3�r2Ds Þ. From the Madelung energy of

the Wigner crystal [14], we extract that the leading con-
tribution to the correlation in the low-density limit is

�cðr2Ds ! 1Þ ¼ �0:509=r2Ds þ 0:815=ðr2Ds Þ3=2. Thus we
find �2 � �2DEG½r2Ds ! 1� ¼ 1:84, which is a dramatic
improvement on the rigorous mathematical result of
Ref. [11] that �2 � �LSY

2 � 452.
Analogously, for the 1D electron gas (1DEG) with a

contact interaction and r1Ds ¼ 1=2n we find �xðr1Ds Þ ¼
��=ð8r1Ds Þ. The leading contribution to the correlation
energy in the low-density limit is �cðr1Ds ! 1Þ ¼
��=ð8r1Ds Þ þ �2=32ðr1Ds Þ2 [15], yielding �1 �
�1DEG½r1Ds ! 1� ¼ 2. Note that this is a general result,
in the sense that it does not depend on the parameter � of
the contact interaction.
Finally, in the Q1D system with a soft-Coulomb inter-

action we first note that the scaling ofWxc is nontrivial due
additional scaling of the parameter a: Wa

xc½�� !
Wa

xc½��� ¼ �W�a
xc ½��. Second, for the LDA in Eq. (5)

we have now AQ1D ¼ 1=2, � ¼ 2, and in the limit a ! 0
the integrand is multiplied by a function fa½nðxÞ� ¼
ln½2=�anðxÞ� þ 3=2��, where� ’ 0:577 is Euler’s con-
stant [16]. Note the scaling property fa½nðxÞ� !
fa½n�ðxÞ� ¼ �f�a½nðxÞ�. Now we assume that the LO
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bound in Q1D also has this form; i.e., the integrand of the
Q1D expression forWxc [Eq. (3)] is multiplied by the same
factor fa½nðxÞ�. Under this assumption, we may search for
the maximum values for �Q1D½n� in Eq. (7) in a similar

fashion as in 3D, 2D, and 1D.
In the low-density limit of the Q1D electron gas

(Q1DEG) we have �xðrQ1Ds !1Þ¼n½lnða�n=2Þ�3=2þ
��=2 and �cðrQ1Ds !1Þ¼n½lnðan=2�Þþ3=2þ��=2
[16]. Hence, we find �Q1D � �Q1DEG½rQ1Ds ! 1� ¼ 2. We

note, again, that the leading contribution to �Q1DEG is inde-

pendent of the softening parameter a of the Q1D model.
Moreover, we note the highly nontrivial fact that the

leading contribution to �1DEG and �Q1DEG is the same. This

encourages us to propose �D ¼ 2 as the tightest general
bound for both 1D and Q1D. It is also important to note
that in 2D, 1D, and Q1D the correction to the leading term
is negative, decreasing the value of the corresponding �D

for finite (nonvanishing) densities, in line with our proposal
to extract the maximum of �D½n� from the low-density
limit of the electron gas. The results for the tightest bounds
in different dimensions are summarized in Table I.

Next, we test our bounds against analytical and near-
exact numerical data obtained independently for low-
dimensional systems, in a similar spirit as was done for
3D systems in Ref. [8]. In particular, we consider 2D
parabolic (harmonically confined) and hard-wall square
quantum dots (QDs) [17], where the density parameter

can be estimated as rs ¼ N�1=6!�2=3 (Ref. [18]) and rs ¼
ð�NÞ�1=2L (Ref. [19]), respectively (2D indication omitted
for clarity). Here ! is the harmonic confinement strength,
L is the side length of the square QD, and N is the number
of electrons.

Figure 1(a) shows �2½n� for a 2D Hooke’s atom, which is
equivalent to a parabolic QDwithN ¼ 2. Here we focus on
some of the analytical two-electron solutions in the range
rs ¼ 0:9 . . . 52 derived by Taut [20]. The maximum value
maxð�2;HookeÞ � 1:55 is relatively close to the correspond-

ing 3D result maxð�3;HookeÞ � 1:49 (Ref. [8]). Detailed

analysis of the low-density behavior of �2 is given below.
In the noninteracting (high-density) limit, where the corre-
lation energy is zero, we find numerically �!!1

2;Hooke ¼
Ex=E

LDA
x � 1:10, which is slightly below the correspond-

ing 3D value [8] of 1.17.
In larger QD systems (N > 2), most reference data are

given only in terms of ground-state total energies Etot,
whereas the calculation of �D½n� requires knowledge of

the exact exchange-correlation energy and the electron
density n. The exact density-functional theory correlation
energy can be computed as Ec½nexact� ¼ Etot½nexact� �
EEXX
tot ½nexact�, where Etot is the exact total energy and

EXX refers to exact exchange. To estimate �D½nexact�, we
may then perform a self-consistent EXX calculation and
calculate

�D � EEXX
x ½nEXX� þ Etot½nexact� � EEXX

tot ½nEXX�
ELDA
x ½nEXX� : (8)

In this work we have performed the EXX calculations in
the Krieger-Li-Iafrate approximation [21] within the
OCTOPUS real-space density-functional code [22]. We

note that according to our numerical test for the 2D
Hooke’s atom, the estimate in Eq. (8) yields generally
larger values for �D½n� than the definition in Eq. (7).
Figure 1(b) shows results for a parabolic QD with N ¼

6. Here we use as the reference data the variational quan-
tum Monte Carlo (QMC) total energies in the weak-
confinement regime [23]. In Fig. 1(c), we present results
for square-well QDs with L ¼ � and varyingN. Again, we
use variational QMC data for the total energies [24].
Comparison with fixed rs to parabolic—and also to
circular-well QDs (not shown)—reveals that deformation
from the circular geometry decreases �2½n�. Similar de-
crease in �2½n� is found if the circular confinement is made
elliptic in the rs ¼ 0 limit (not shown).
The rs ¼ 0 limit allows testing also within circular

confinement by varying the curvature, i.e., the exponent
in VcircularðrÞ ¼ jrj�. Interestingly, the largest value for �2

is obtained at the smallest � we can numerically consider,
i.e., at � ¼ 0:5, which gives �2½n� ¼ 1:110. Overall, the
numerical results summarized in Fig. 1 show that in both
finite and infinite 2D systems, values obtained for �2½n� are
consistently below our limit �2 ¼ 1:84 (thick dashed line).
Finally, we consider the low-density limit of the 2D

Hooke’s atom in detail. In Fig. 2, we show �2½n� (solid
line) up to the extreme low-density regime. As expected,
�2½n� first increases as a function of rs. However, at rs �
50, we find an local maximum of �2½n� � 1:55 [see also

TABLE I. Estimated prefactors �D ¼ CD=AD for bounds on
Exc and Wxc, compared to literature values, in different dimen-
sions. The quasi-one-dimensional (Q1D) case involves special
conditions (see text).

D 3 2 1 Q1D

�here
D 1.96 1.84 2.0 2.0

�lit
D 2.27 [3] 452 [11] 	 	 	 	 	 	

r
s
 = 8.6, 6.1, 4.7, 

       3.9, 1.9

r
s
→ 0

0.75

1

1.25

1.5

1.75

2

λ 2

r
s
→ 0

r
s
 = 52, 11, 

       2.9, 0.9

 

r
s
 = 1.3, 0.62, 0.44

r
s
→ 0

N = 2
N = 8
N = 16

r
s
→ 0

r
s
→ ∞

quantum dot
parabolic square

quantum dot

N = 2 N = 6(a) (b) (c) (d)

2D electron gas2D Hooke’s atom

FIG. 1 (color online). Values for �2½n� in different finite and
infinite 2D systems compared to our limit �2 ¼ 1:84 (thick
dashed line).
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Fig. 1(a)] followed by a decrease at higher rs. By contrast,
if the (2D) LDA exchange in Eq. (7) is replaced by exact
exchange �2½n� ! �
½n� :¼ Exc=Ex ¼ 1þ Ec=Ex, the be-
havior is monotonic (dashed line) as expected. Note, how-
ever, that �
½n� is not the quantity used in the LO bound but
is used here as an auxiliary quantity. Examination of the
total electron density in the low-density regime suggests
that the unexpected behavior of �2½n� in Fig. 2 is due to the
breakdown of the 2D-LDA. Namely, as the confinement is
made weaker, the electrons are pushed further apart from
each other leading to a Q1D ring-shaped total density. In
fact, the low-density regime in Fig. 2 shows reasonable
agreement between �
 and the Q1D result (dotted line)
deduced from Fogler [16] with the parameter a estimated
from the low-density ringlike model by Taut [20]. Hence, it
is evident that decreasing the density in a 2D Hooke’s atom
leads to a dimensional crossover.

In summary, we have shown that the exponents in
Eqs. (1) and (2) are consequences of universal scaling
properties of the electron-electron interaction. We have
thus been able to deduce the exponent � of a one-
dimensional bound. Furthermore, we have provided a
tightening of the prefactor of the three-dimensional bound,
a dramatic tightening of the prefactor in two dimensions,
and the first proposal for the prefactor in one dimension.
Unexpected generality of the bound with respect to the
type of interactions in one- and quasi-one-dimensional
systems was observed. Our numerical tests for low-
dimensional model systems are consistent with the deriva-
tions, all showing �2½n�< �2, and display an interesting
dimensional crossover in the low-density limit. Besides

their general relevance in quantum many-body physics,
these results provide constraints for accurate approxima-
tions of the exchange-correlation functionals in any
dimension.
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FIG. 2 (color online). Values for �2½n� in a two-dimensional
Hooke’s atom as a function of rs ¼ 2�1=6!�2=3. The circles
connected by solid lines correspond to �2½n� in the definition of
Eq. (7). The dashed line shows the auxiliary quantity �
½n� (see
text). The dotted line corresponds to the quasi-one-dimensional
result.
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