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Starting with a liquid eutectic droplet on a surface, we calculate its dynamical evolution into an

epitaxial nanowire via the vapor-liquid-solid growth process. Our continuum approach incorporates

kinetic effects and crystalline anisotropy in a natural way. Some realistic features appear automatically

even for an isotropic solid, e.g., the tapered wire base. Crystal anisotropy leads to a richer variety of

morphologies. For example, sixfold anisotropy leads to a wire shape having broken symmetry and an

intriguing resemblance to the h110i-oriented Si wires seen in Au-catalyzed growth on Si (111), while

higher symmetry leads to a shape more like h111i Si wires.
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In the last decade there has been an explosion of work on
the growth of semiconductor nanowires. Most of this work
uses the vapor-liquid-solid (VLS) process, in which typi-
cally a liquid eutectic droplet catalyzes capture of material
from the vapor and incorporation into the solid [1]. The
basic VLS mechanism has been understood for decades
[1,2], but more recent work has revealed a rich and often
puzzling phenomenology. To address this, and to achieve
the control required for technology, will require a far more
complete understanding. To date there have been useful
discussions and analyses, especially for steady-state
growth within isotropic models [2–5], but no general
method for calculating the dynamical evolution from a
droplet into a wire has been reported to our knowledge [6].

Here we present a continuum model for nanowire VLS
growth. We apply the model to study how growth begins
and evolves toward steady-state wire growth. More com-
plex situations such as catalyst coarsening and interrupted
growth [7] are easily handled, as we show. Most impor-
tantly, we can study how crystal anisotropy affects the wire
morphology and growth direction. For example, Au-
catalyzed Si nanowires are most often seen growing in
the h111i direction, but h110i and h112i wires are also
observed. An isotropic model in two dimensions gives a
morphology qualitatively like h111i Si wires. A 12-fold
anisotropy increases the similarity. But a sixfold anisotropy
leads to a shapewith broken symmetry, growing at an angle
to the substrate. This shape is very different from h111i
wires, but bears a striking resemblance to the wires that
grow in the h110i direction. Our growth simulations show
not only the final shape but also the entire dynamical
evolution, revealing the process by which the symmetry
is broken.

Our system consists of a liquid eutectic on a solid
surface (e.g., AuSi on Si), as in Fig. 1(a). The liquid can
move along the solid surface in response to capillary
forces. At the same time, the solid can gain or lose material
to the liquid in response to differences in the chemical
potentials, which include contributions from capillary
forces [8]. Therefore we first address the forces (which

may be unbalanced), then calculate the chemical potential
including these forces, and finally use these as input to
kinetic models of the evolution.
An important aspect of our approach is that even when

there is a ‘‘sharp’’ corner, it is actually smooth at some
length scale. The solid surface has a minimum radius of
curvature, as described below and illustrated in Fig. 1.
Thus the forces on the trijunction can always be separated
into components normal and tangential to the solid, as for a
liquid on a planar solid. Motion of the trijunction along the
solid surface is driven by the tangential component, with
force per unit length

fc ¼ �vs � �ls � �vl cos�c (1)

with positive force meaning outward from the liquid. Here
�vs, �ls, and �vl are the vapor-solid, liquid-solid, and
vapor-liquid interface energies per unit area, and �c is
the contact angle [measured from the local tangent, as in
Fig. 1(b)].
In general, this force can be used as input for any desired

model of the liquid dynamics. However, in VLS the re-
sponse of the liquid is fast compared with the growth rate
of the solid. Therefore the droplet stays close to mechani-
cal equilibrium: fc ¼ 0, and the liquid-vapor interface has
constant mean curvature. These conditions, together with

FIG. 1 (color online). (a) Equilibrium morphology of the liq-
uid catalyst on the solid substrate, for parameters in text. Dashed
lines show classic equilibrium angles, oriented to be tangent to
the droplet at the trijunction, illustrating that these angles are
captured correctly by the simulation. (b) Expanded view of
trijunction, showing that the solid surface is locally smooth.
Double arrow indicates smoothing of corner by wc. �c is contact
angle measured from local tangent.
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the droplet volume, determine the trijunction position and
contact angle as the shape of the solid evolves.

In addition to the tangential force fc at the trijunction,
there is also a force normal to the surface. This force does
not contribute to motion of the liquid, but it enters the
chemical potential and thus plays a central role in control-
ling the growth of the solid. The normal force on the solid
is

p ¼ �vl�l�l � �vl sin�c�c: (2)

The Gibbs term (�vl�l) represents the internal pressure of
the liquid, where �l is the trace of the curvature tensor of
the vapor-liquid interface (which is constant over the inter-
face). There is no pressure outside the droplet, as indicated
by the step function �l which equals 1 at the liquid-solid
interface and 0 at the vapor-solid interface. The second
term is the liquid surface tension pulling on the solid. This
gives a �-function distribution of pressure applied at the
trijunction. To avoid singularities, we smooth the discon-
tinuous step function �l over a width wc. (This may be
viewed as roughly representing the finite thickness of the
liquid-vapor interface, or as merely a mathematical regu-
larization of the discontinuity at the trijunction.) We take
the smoothed � function to be �c ¼ jrs�lj, where rs is
the gradient along the solid surface.

Including the normal force explicitly, the chemical po-
tential �s at any point on the surface of the solid can be
written [9,10]

�s ¼ �s

�
��þ � � @

2�

@n̂2
þ pþ Cð�Þ

�
: (3)

Generalizing the Gibbs term �� to anisotropic � adds the
second term: the scalar contraction of the curvature tensor
� ¼ �rsn̂ and the second-derivative tensor @2�=@n̂2, n̂
being the unit normal vector defining surface orientation.
The interface energy changes across the trijunction, with a
step function � ¼ �ls�l þ �vsð1��lÞ. Note that �ls and
�vs are orientation dependent, so � ¼ �ðn̂Þ. �s is the
atomic volume, and Cð�Þ is a standard regularization
term that limits the sharpness of edges on faceted surfaces
[9].

We also need the chemical potential �l in the liquid.
This is treated in detail in Ref. [5]. For the present study we
take a simplified illustrative model,

�l ¼ �ðcl � c0Þ þ�l�vl�l: (4)

For liquid composition cl, the first term represents the
supersaturation with respect to the equilibrium liquidus
concentration, taken here as c0 ¼ 0:2. Thus � reflects the
derivative of � or second derivative of free energy with
respect to composition. The second term is the Gibbs-
Thomson effect of surface tension, with �l being the
specific volume in the liquid.

Given the chemical potentials, we can now address the
growth kinetics. In VLS growth, the liquid captures mate-
rial from the vapor and deposits it onto the solid. Ideally the

number Ncat of catalyst atoms remains fixed. But the
number Ng of atoms of the growth material (e.g., Si for

AuSi-Si) can evolve, along with their chemical potential�l

in the liquid. If the liquid is close to equilibrium with the
vapor, then �l is a constant controlled experimentally via
the vapor, as for Si growth from SiCl4 þ H2 [2]. More
generally, if material is added at a rate �g (atoms=time),

the amount of solute Ng evolves as

dNg

dt
¼ �g ���1

s

Z
vsdA; (5)

where dA is an area element of the interface, and vs is its
velocity. Integrating Eq. (5) gives Ng and hence the evolv-

ing composition cl ¼ Ng=ðNcat þ NgÞ. For our simula-

tions, we use a model appropriate for Au-catalyzed Si
growth from disilane [11], where �g ¼ rvlAvl=�s. Here

Avl is the vapor-liquid interface area, and rvl is a rate
constant which depends on temperature and on the partial
pressure of the source gas in the vapor, but not on �l.
For the liquid-solid kinetics, we use the simplest kinetic

model that seems consistent with experiment, assuming
that liquid diffusion is fast compared with the time scale of
growth, and that attachment and diffusion on the sidewall
are negligible. Then crystal growth is controlled by attach-
ment at the liquid-solid interface:

vs ¼ �lsð�l ��sÞ; (6)

where vs is the local growth velocity of the solid. The
kinetic rate coefficient �ls is taken as nonzero only at the
liquid-solid interface, where it is isotropic and independent
of position. [Kinetic anisotropy can be easily included in �
in Eq. (6).]
In our numerical implementation, for simplicity we

restrict ourselves to two dimensions (2D). We track the
solid surface using discrete points with variable spacing
and spline interpolation; so it is straightforward to ensure
that the point spacing is everywhere much smaller than the
local radius of curvature (e.g., much smaller than wc at the
trijunction in Fig. 1). To reduce the number of parameters,
we focus on the limit of small wc and large �, decreasing
wc and increasing � until the growth behavior converges.
In this large-� limit, c0 and �l become irrelevant: the
liquid is merely a conduit for material, and �l adjusts to
ensure that the growth rate exactly balances the incoming
flux �g at all times.

We begin with the static equilibrium, �g ¼ 0, of an

isotropic solid. We take �s�vs ¼ 0:16 eVnm, �s�ls ¼
0:07 eV nm, �s�vl ¼ 0:14 eV nm, and 2D liquid ‘‘vol-
ume’’ of 6250 nm2 on a semi-infinite solid. These four
numbers set the energy scale, the length scale, and the two
independent angles of the equilibrium trijunction [12].
Integrating Eq. (6) to equilibrium [i.e., allowing nonzero
� everywhere instead of just at the liquid-solid (LS) inter-
face in Eq. (6)], we obtain the geometry shown in Fig. 1.
On the scale of Fig. 1(a), the shape appears indistin-

guishable from the classic ‘‘oil drop on water’’ shape with
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angles given by balancing all capillary forces [12]. The
classic angles calculated from the surface energies are
shown as dashed lines, and they correspond well to the
tangents at the trijunction.

A closer view of the trijunction is shown in Fig. 1(b).
The surface is actually smooth on a scale set bywc orCð�Þ;
here we take wc ¼ 0:4 nm, and we omit Cð�Þ for the
isotropic case. The microscopic contact angle in Fig. 1(b)
is consistent with Young’s equation (force balance tangent
to the surface) [12].

The ratio rvl=�ls between vapor-liquid and liquid-solid
rate constants determines whether we are in the regime of
slow growth (liquid near equilibrium with solid) or fast
growth (large liquid supersaturation). Since �ls and rvl are
both thermally activated, but with very different activation
energies, rvl=�ls can span a huge range depending on the
system and the growth temperature.

Beginning from equilibrium, we grow at different rates
�g. The result are shown in Fig. 2. For relatively slow

growth (rvl=�ls ¼ 0:5 meV) the apparent angles at the
steady-state trijunction are close to their equilibrium val-
ues, as shown in Fig. 2(b). Increasing the growth rate or
decreasing �ls by a factor of 2000 flattens the growth front
dramatically, as shown in Fig. 2(c).

Often nanowire growth is not steady state. A good
example is the tapering of Au-catalyzed Si nanowires
due to diffusion of Au from one wire to another [7]. Our
model can easily accommodate such processes. The Au
chemical potential is well understood in principle [5], so
one can calculate the diffusion between wires, given some
model for the diffusion and attachment kinetics. Here we

illustrate the effect of such coarsening on wire morphology
by simply letting the amount of catalyst increase or de-
crease at a constant rate dNcat=dt ¼ �cat.
Growing at a constant rate, we obtain the tapered mor-

phologies shown in Figs. 3(a) and 3(b). The degree of taper
simply reflects the ratio �cat=�g. If we interrupt the

growth, so that�g ¼ 0 for some period while�cat remains

unchanged, we find the morphologies shown in Figs. 3(c)
and 3(d). This is quite similar to the morphologies seen
experimentally when growth is interrupted [7].
Most semiconductors are strongly faceted. Our approach

makes it straightforward to include highly anisotropic
surface energies. Thus we can study by direct simulation
how anisotropy affects the growth dynamics and the final
wire morphology. Here we use a minimal model [9] for the
surface energy anisotropy

� ! �ð1� �n cosn�Þ (7)

where for simplicity we multiply both �vs and �ls by the
same dimensionless anisotropy factor (1� �n cosn�). The
angle � is the local surface orientation in our 2D model; the
3D generalization is given in Ref. [9]. This model does not
give strictly planar facets, but for large enough � is gives an
equilibrium crystal shape with n nearly flat faces meeting
at sharp corners.
We first consider n ¼ 12 and �12 ¼ 0:02, equilibrating a

droplet of liquid and then growing at the same rate as in
Fig. 2(a). The result is shown in Fig. 4(a). The substrate
orientation is � ¼ 0, a minimum-energy orientation. The
equilibrium crystal shape is reflected in the initial LS
interface before growth. In many ways, the growth appears
similar to the isotropic result of Fig. 2. There are also
intriguing differences. In steady-state growth, the LS inter-
face is quite flat and normal to the sidewall. The wire base
is a faceted pedestal as seen in some experiments, rather
than smoothly tapered as in Fig. 2.
The behavior changes dramatically for n ¼ 6. The LS

interface takes a stable orientation as before. However, the
orientation normal to this is not stable; so if the sidewall

FIG. 2 (color online). (a) Evolution from equilibrium droplet
to steady-state nanowire growth, for relatively slow growth.
Successive lines from bottom to top show outline of crystal at
equal time increments during growth. Circular arc at top is liquid
at final time. (b) Region around growth front, for final geometry
of (a). Straight lines show classic equilibrium angles (i.e.,
calculated from the � values), oriented to be tangent to droplet
at trijunction. Trijunction angles during slow growth are found to
be close to the equilibrium values here. (c) Same as (b), for
relatively fast growth, showing change in shape of growth front
and angles due to kinetics.

FIG. 3 (color online). Catalyst coarsening with and without
interruption. Steady loss (a) or gain (b) of catalyst during growth
leads to smoothly tapering wire. Interrupting the growth halfway
through, while catalyst loss (c) or gain (d) continues, leads to an
abrupt change in width [highlighted by dotted lines in (d)].
Similar behavior has been seen in experiment [7].
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takes a low-energy orientation, it cannot meet the LS inter-
face at a right angle. Instead the wire grows at an angle, as
seen in Fig. 4(b) for �6 ¼ 0:10. It is intriguing to note that
the morphology for 12-fold anisotropy resembles that of
Au-catalyzed Si nanowires growing in the h111i direction
on a (111) substrate, while the sixfold case of Fig. 4(b)
resembles h110i wires [13].

Even more intriguing than the steady-state growth is
how the wire reaches an asymmetric geometry from a
symmetric beginning. Figure 4(b) includes the outline of
the solid at successive times. Initially, the LS interface
evolves to fill in the initial depression and build a tapering
mound, much as in the isotropic and 12-fold cases. As a
result, the droplet is squeezed onto an increasingly narrow
pedestal.

Eventually the pedestal becomes too narrow, and the
situation becomes unstable. At that point, as shown in
Figs. 4(c)–4(g), the droplet unpins from a corner (c),(d),
and slides (c)–(e) far enough down the sidewall (e) to
relieve the force on both trijunctions. This breaks the
reflection symmetry and (e) initiates growth (f),(g) of a
new facet.

Before performing these simulations, we expected that
the trijunction would advance monotonically forward, and
that the final sidewalls were simply a trace of the trijunc-
tion trajectories [3]. Instead, the evolution is at once more
complex and easier to understand. It was unanticipated
because the final wire geometry hides the complexity of

the dynamic trajectory. In situ microscopy during growth
shows that such jumps are a common feature in nanowire
growth in some conditions [14].
In conclusion, our kinetic model makes it possible to

directly simulate VLS growth, including growth of a nano-
wire from a catalyst droplet. Our initial studies already
reveal unexpected details of the growth dynamics, such as
how new facets are introduced during the approach to
steady-state growth. We expect that in the future this
approach will make possible a more direct coupling of
theory and experiment, providing further insight into nano-
wire growth.
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FIG. 4 (color online). (a) Growth of wire with 12-fold anisot-
ropy described in text. Lines show outline of solid at successive
times. The lowest line is initial equilibrium structure. Circular
arc at top is liquid-vapor interface at final time shown. (b) Same
for sixfold anisotropy described in text. (c)–(g) Time sequence
for region indicated by dotted circle in (b), at much shorter time
intervals, showing how the droplet (d) unpins from the corner
and slides down the sidewall, and (e) introduces a new facet
which in (f),(g) becomes the new sidewall, thereby breaking the
symmetry and initiating the steady-state growth morphology.
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