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We introduce a new form of stable spatiotemporal self-trapped optical packets stemming from the

interplay of local and nonlocal nonlinearities. Pulsed self-trapped light beams in media with both

electronic and molecular nonlinear responses are addressed to prove that spatial and temporal effects

can be decoupled, allowing for independent tuning. We numerically demonstrate that ð3þ 1ÞD light

bullets and antibullets, i.e., bright and dark temporal solitons embedded in stable ð2þ 1ÞD nonlocal

spatial solitons, can be generated in reorientational media under experimentally feasible conditions.
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Solitary waves or solitons are ubiquitous and have been
identified in various physical systems, including fluids,
plasmas, electromagnetic waves, biologic and atomic mat-
ter [1]. In optics, temporal and spatial solitons have been
recognized as fundamental objects, not only in nonlinear
physics, but also for their potentials in new all-optical
signal processing technologies. Optical solitons have
been obtained in a broad range of media and, in spite of
the diverse underlying nonlinear responses, share several
universal properties [2,3]. The main distinguishing feature
is the scale of time and space in which the nonlinear
mechanisms operate: on one side of this group are those
nonlinearities which originate from thermal, molecular,
charge drifting mechanisms [4–11], nonlocal in time and
space; on the opposite side are electronic or catalytic
nonlinearities, usually treated as local and instantaneous
at optical frequencies [12–16]. The instantaneous Kerr
effect enables the observation of temporal nonlinear evo-
lution in short optical pulses; in fibers, e.g., several phe-
nomena have been the subject of numerous studies in
literature [12] as they tend to became important when
high peak optical power is involved. In the spatial domain
ð2þ 1ÞD solitons, i.e., beams spatially self-trapped in both
transverse dimensions, have been shown to be unstable in
the Kerr regime [17]. Spatiotemporal solitons, i.e., wave
packets that maintain invariant both their spatial and tem-
poral profiles through propagation, sometimes referred as
ð3þ 1ÞD solitons or bullets, were first discussed by
Silberberg [18] and have since gained much interest,
although experimentally feasible conditions for their exci-
tation have yet to be found [19].

Recently, robust and stable ð2þ 1ÞD spatial solitons
were theoretically addressed in media exhibiting a highly
nonlocal response [20,21] and demonstrated in a variety of
materials [4–11]. Such a nonlinearity is enhanced by a
time-integration of the field-dependent response which,
in turn, tends to be insensitive to fluctuations faster than
a characteristic time [22]. When a local nonlinearity co-

exists with a nonlocal one, for instance the electronic
response in thermal or diffusive media, it is possible to
tailor a combination of fast (local) and slow (nonlocal)
nonlinearities by separately controlling instantaneous and
average excitation properties. This makes available a
whole new class of dynamical systems where interplay is
allowed between phenomena associated with an instanta-
neous (local) response and those linked to a noninstanta-
neous (nonlocal) nonlinearity, extending beyond optics to
areas such as Bose-Einstein condensates and plasmas.
In this Letter we predict the existence of a new kind of

ð3þ 1ÞD light bullets with spatial and temporal profiles
governed by two independent nonlinear processes. This
specific synergy can take place in media with both a non-
instantaneous nonlinearity and a Kerr-type response.
We numerically demonstrate light bullets and antibul-

lets, i.e., temporal bright and dark solitons within a non-
local self-localized beam, making specific reference to a
reorientational dielectric with a cubic electronic suscepti-
bility, namely, nematic liquid crystals (NLC) [5].
Let us consider a Gaussian beam composed of a train of

pulses, having width and separation much shorter than the
characteristic response time of the slow nonlinear mecha-
nism; hence, in a self-focusing slow or nonlocal dielectric,
stable ð2þ 1ÞD solitons with propagation-invariant profile
can be generated as they are insensitive to the pulsed
character of the excitation [4]. Whereas in principle any
slow nonlinear response can be exploited, spatially non-
local media are specifically addressed here as they provide
also the stabilization required to prevent the Kerr collapse
[3,20].
In the time domain, each individual pulse is subject to a

spatially invariant confining potential with constant (tem-
poral) dispersion for the soliton mode. For the space-
time field distribution of a pulse-train with central fre-
quency !0, propagating with a wave vector � ¼ �z along
z and with a pulse-to-pulse separation �, we can write:
Eðr; TÞ ¼ Fðx; yÞf�n½Aðz; T � n�Þ� exp½ið�z � !0tÞ�g,

PRL 102, 203903 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
22 MAY 2009

0031-9007=09=102(20)=203903(4) 203903-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.203903


with r ¼ ðx; y; zÞ and F the normalized spatial profile withRR
Fdxdy¼ 1. The evolution of the slowly varying tempo-

ral profile A will be governed by the 1D nonlinear
Schrödinger (NLS) integrable model [12]:

i
@A

@z
� �2

2

@2A

@T2
� �jAj2A ¼ 0; (1)

where � is the effective temporal nonlinearity, �2 ¼
@2�=@!2 is the soliton group velocity dispersion (GVD),
and T ¼ t� z=vg is a moving time frame with t the time

and vg the group velocity. Equation (1) supports temporal

bright solitons for �2 < 0 and dark solitons for �2 > 0
[12]. In the first case, as the pulses are confined within a
stable ð2þ 1ÞD spatial soliton, the resulting spatiotempo-
ral soliton (in the commonly accepted extension of the term
to nonintegrable models), corresponds to a train of ð3þ
1ÞD self-localized packets or ‘‘light bullets’’; their stability
stems from decoupling the ð3þ 1ÞD problem into a ð2þ
1ÞD spatial (nonlocal) and a ð1þ 1ÞD temporal (Kerr)
cases, both of which are known to lead to stable solutions
[12,20]. The previous statement relies on assuming that
(i) the repetition rate 1=� is large enough for the nonlocal
nonlinearity to be insensitive to the pulsed nature of the
excitation and (ii) the peak intensity induces a negligible
Kerr self-focusing. The former hypothesis will be justified
later on as we address in detail the response of reorienta-
tional media. For the latter we recall that a spatial soliton is
obtained when self-focusing balances diffraction; we can
express the diffraction angle of a Gaussian beam as �d ¼
0:61�0=n0w0, while the Kerr self-focusing angle is �f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2Ppeak=�n0w

2
0

q
with w0 the beam waist, Ppeak the peak

power, n0 and n2 the linear and intensity-dependent indices
of refraction, respectively. For Ppeak much lower than the

Kerr spatial soliton critical power, nonlinear diffraction can

be approximated by ��d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2d � �2f

q
; therefore, for input

powers able to excite a nonlocal spatial soliton, the figure
� � ð�d � ��dÞ=�d quantifies the impact of the Kerr effect

on the spatial evolution. For highly nonlocal media, mod-
erate peak excitations and typical (electronic) n2 values (of
the order of 10�17 m2=W or lower), it is straightforward to
estimate � � 1, i.e., Kerr self-focusing can be neglected.

We now address the specific case of a nonlocal soliton
excited and propagating in nematic liquid crystals (NLC),
within a structure similar to that described in Ref. [4] but
with no applied voltage: two parallel glass slides sandwich
the fluid NLC dielectric, with anchoring layers aligning the
optic axis n̂ (molecular director) parallel to the cell plane
yz, with z the wave vector direction and y orthogonal to the
NLC thickness along x. The input beam, extraordinarily
polarized in yz, propagates in the medium at an angle � ¼
�0 with respect to the director. Neglecting vectorial effects
and adopting the paraxial approximation, the evolution of
the beam profile Fðx; yÞ is given by

2ik
@F

@z
þ @2F

@x2
þ @2F

@y2
þ k0

2½n2ð�Þ � n0
2ð�Þ�F ¼ 0; (2)

where k0 is the vacuum wave number, k2 ¼ k20½n20 þ
n2asin

2ð�0Þ�, n2a ¼ n2k � n2? the optical anisotropy and �

the angular distribution of the director n̂, ruled by [4,5,23]

@2�

@x2
þ @2�

@y2
þ na

2 sinð2�Þ
4K

jFj2hj�nAðz; T � n�Þj2it ¼ 0:

(3)

In Eq. (3) K is the NLC elastic constant and hit is a time-
mobile average operator to account for the slow response
of molecular reorientation. In the absence of excitation, the
time-evolution of a perturbed �-distribution is given by

�

K

@�

@t
¼ @2�

@x2
þ @2�

@y2
(4)

with � the viscosity. For a (narrow) input beam propagat-
ing in the sample midplane, we can approximate the trans-

verse angle profile as a Gaussian � ¼ �̂ðtÞ exp½�ðr=WNÞ2�.
Substituting in Eq. (4), we obtain

d�̂

dt
¼ K

4

�

�
r2

W4
N

� 1

W2
N

�
�̂: (5)

In the highly nonlocal regime the soliton waist Ws is
substantially narrower than the perturbation, i.e., W0 �
WN; hence, for r comparable to W0, we can adopt the
approximation R2=W4

N � 1=W2
N , yielding the closed

form solution �̂ ¼ �̂0 expð�t=	Þ, where 	 ¼ �W2
N=4 K is

the relaxation time. Considering the commercial NLC
mixture E7, a realistic value for WN � 20 
m [4], K �
10�11 N and � ¼ 0:05 Pa s [23], we obtain 	 > 100 ms;
therfore, excitations at repetition rates higher than
�0:1 kHz affect only the spatial envelope through the
average power, whereas the electronic nonlinearity re-
sponds to the peak intensity associated to each pulse. In a
Gaussian pulse train, average and peak powers are related
by Ppeak ¼ Pave�=ð	p

ffiffiffiffi
�

p Þ (here 	p is the pulse duration)

and can be independently adjusted by varying wp and the

pulse separation �. System (2–3) yields stable solitary so-
lutions that can be solved numerically, with soliton power
PS and waist W0 related by PS ¼ 2�2Kcn=ð�n4aW2

0 Þ,
where n is the mean refractive index for extraordinary
rays (n � 1:55) and � is the wavelength [21]. Approxi-
mate z-invariant solitons can be calculated using the beam
propagation method coupled with a nonlinear relaxation
algorithm to solve Eqs. (2) and (3) [4]. In our calculations
we used � ¼ 850 nm and average powers Pave set between
0.5 and 10 mW. Figure 1 shows the intensity distribution of
a nonlocal soliton for a Gaussian excitation with Pave ¼
4:1 mW and field waist (1=e) of 3:6 
m launched in a
NLC cell of thickness L ¼ 60 
m [Figs. 1(a) and 1(b)],
the optic axis set at �0 ¼ �=6. The resulting director dis-
tribution [Fig. 1(c)] and optical intensity hE2i [Fig. 1(d)]
over a propagation length of 5 mm underline the highly
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nonlocal nature of the medium. The power dependence of
the soliton waist is shown in Fig. 2(a). In order to estimate
the waveguide dispersion we expressed the wavelength
dependence of both ordinary and extraordinary NLC in-
dices with single resonances [23]:

n?¼1þ�?�2=ð�2��?
2Þ; nk ¼1þ�k�2=ð�2��k

2Þ;
(6)

where �?, �k are the strengths and �?, �k the wavelengths
of the resonances for n? and nk, respectively. For E7, using
a best-fit approach we determined �? ¼ 129 nm, �? ¼
2:983� 10�5, �k ¼ 182 nm, �k ¼ 2:083� 10�5with a

standard deviation � < 5� 10�4 in the range 436 nm<
�< 1550 nm. We evaluated the GVD vs power using a
finite-difference mode-solver, neglecting the slight fila-
ment ellipticity due to the boundaries, since W0 � L. As
apparent in Fig. 2(b), in the considered geometry and
power range the GVD is normal (�2 > 0) even for different
anchoring angles �0, (which affect the soliton-waveguide
GVD through changes in the extraordinary index), as
visible in Fig. 2(c). The sign of �2, however, can be
changed by doping the NLC with a suitable dye, consid-
ering an additional weak resonance in Eq. (6), with �res and
�res being its strength and wavelength, respectively.
Figure 2(d) displays the calculated anomalous �2 of the
2 mW spatial soliton waveguide in the case of a weak
resonance (�res ¼ 10�9) versus �res [24]. Therefore, the
formation of spatiotemporal solitary waves in the form of
self-confined light bullets for �2 < 0 can be realistically

addressed in such a medium. We will neglect the losses
introduced by the doping and the scattering as the former
depends essentially on the resonance width and can be very
small for significant negative �2 (lower than �1 ps2=m)
while the latter depends on the temperature and on the laser
wavelength, neither of which are constraints in our ap-
proach. Figure 3 shows the calculated evolution of an input
pulse Aðz; TÞ ¼ ffiffiffiffiffiffi

P0

p
sechðT=T0Þ [the bright soliton solu-

tion of Eq. (1)], with T0 ¼ 150 fs, �2 ¼ �0:163 ps2=m
obtained for a dye resonance at �res ¼ 1000 nm and a
soliton waveguide excited using an average power Pave ¼
3:4 mW. The electronic Kerr coefficient for the E7 is n2 �
5:2� 10�18 m2=W (�10�11 esu) [25]. In the soliton
waveguide the nonlinear strength is expressed as � ¼
n2!0=cAeff , Aeff ¼ �W2

0 the effective area [14] and W0 ¼
2:5 
m (at the given excitation). As P0 increases from 0.1
[Fig. 3(a)] to 9.4 W [Fig. 3(b)], temporal confinement takes
place, as expected. Noteworthy, the average power can be
kept constant by decreasing the repetition rate while the
peak power is increased, or by time-chopping a dense pulse
train and varying the modulation duty cycle.
In the case �2 > 0, dark soliton solutions of the 1D NLS

exist and have the form [14]

Aðz; TÞ ¼ ffiffiffiffiffiffi
PS

p
tanhðT=T0Þ; (7)

where T0 defines the notch duration and PS ¼ �2=ð�T2
0Þ is

the peak power of the continuous-wave background. This
presence of a CW power pedestal [25] would affect the
time-average excitation properties; however, narrow dark
solitons can be excited on top of pulses with a large
dispersion length compared to the notch waist, [26] ena-
bling the independent control of the average power and the
realization of antibullets under experimentally feasible
conditions. An input pulse exciting such a realistic funda-
mental dark soliton is Aðz; TÞ ¼ ffiffiffiffiffiffi

P0

p
tanhðT=T0Þ�

exp½�ðT=	pÞ2�, with 	p 	 T0. A train of broad optical

pulses, each containing a � phase-discontinuity at the peak

FIG. 1 (color online). Numerical integration of system (2) and
(3) for an E7 type NLC in a cell of thickness L ¼ 60 
m. A
Gaussian beam of average power Pave ¼ 4:1 mW and a field
waist (1=e) of 3:6 
m is launched along z. (a)–(b) A ð2þ 1ÞD
spatial soliton forms and propagates with a transverse invariant
profile. The distributions of (c) director orientation and
(d) intensity hE2i depicted at z ¼ 5 mm.

FIG. 2. Calculated soliton (a) waist W0 and (b) GVD vs the
average power of the pulse train for �0 ¼ �=6 and (c) GVD
versus initial director orientation �0 for Pave ¼ 3:4 mW. All the
plots consider the propagation in undoped NLC � ¼ 850 nm.
(d) Soliton GVD vs dye-dopant resonance wavelength for �res ¼
10�9, �0 ¼ �=6, Pave ¼ 3:4 mW, � ¼ 850 nm.
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of the narrow notch, can be generated by spectral filter-
ing [26]. Spatial (bright) and temporal (dark) soliton re-
quirements for average and peak powers yield a critical

relationship between the repetition rate � and 	p ¼
�½4c�Knn2T2

0=ð�3=2n4aw
4
0�2Þ�. Figure 4 shows the calcu-

lated evolution of an input pulse of the form Eq. (7),
launched on a top of a broad pulse with 	p ¼ 6:5 ps and

T0 ¼ 150 fs, with average power Pave ¼ 3:4 mW in both
the low (P0 ¼ 0:1 mW) and high (P0 ¼ 10 W) peak-
power limits, the latter close to the critical value. Clearly,
the notch disperses for low P0 [Fig. 4(a)] but maintains
its profile when the Kerr response becomes substantial
[Fig. 4(b)], in agreement with the results obtained in
Ref. [26] for fundamental dark solitons on a finite
background.

In conclusion, we presented a novel approach to spatio-
temporal solitons and ð3þ 1ÞD nonlinear pulse shaping in
media where two different nonlinearities define spatial and
temporal responses. The synergetic action of nonlocal and
instantaneous nonlinearities in space and in time, respec-
tively, can be combined with independently tuned strengths
owing to their distinct characteristic scales: such a decou-
pling enables to ‘‘access’’ spatiotemporal self-localized
wave packets under experimentally feasible conditions.
We numerically demonstrated self-confined light bullets
and antibullets, i.e., bright and dark temporal solitons
propagating in bright ð2þ 1ÞD spatial solitons, in nematic

liquid crystals. These results carry a large potential impact
on localized light propagation in media with nonlinear and
nonlocal optical responses (e.g., thermo-optic and photo-
refractive dielectrics) as well as on physical systems where
multiple nonlinear mechanisms coexist (e.g., matter waves
in fluids, plasmas, Bose-Einstein condensates). Given the
variety of noninstantaneous nonlocal dielectric systems
identified in recent years, we expect these results to open
up new avenues towards the realization of stable spatio-
temporal solitons.
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FIG. 4 (color online). Temporal evolution of the intensity of
the dark pulse on a finite background for T0 ¼ 150 fs, 	p ¼
6:5 ps, and Pave ¼ 3:4 mW: (a) at low peak power P0 ¼
100 mW the dark notch disperses in propagation, whereas
(b) at high peak-power P0 ¼ 10 W a dark soliton forms.

FIG. 3 (color online). Temporal evolution of the intensity
(normalized units) of the bright pulse for T0 ¼ 150 fs and �2 ¼
�0:163 ps2=m: (a) at low peak-power P0 ¼ 100 mW the pulse
disperses in propagation whereas (b) at high peak-power P0 ¼
9:4 mW a bright soliton forms. Pave ¼ 3:4 mW in both cases.
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