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In a unified approach, we study the transport properties of periodic-on-average bilayered photonic

crystals, metamaterials, and semiconductor superlattices. Our consideration is based on the analytical

expression for the localization length derived for the case of weakly fluctuating widths of layers and takes

into account possible correlations in disorder. We analyze how the correlations lead to anomalous

properties of transport. In particular, we show that for quarter stack layered media specific correlations

can result in a !2 dependence of the Lyapunov exponent in all spectral bands.
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Introduction.—In recent years, much attention was paid
to the propagation of waves (electrons) in periodic one-
dimensional structures (see, e.g., [1] and references
therein). The interest in this subject is due to various
applications in which one needs to create materials, meta-
materials, or semiconductor superlattices with given trans-
mission properties. One of the important problems that still
remains open is the role of a disorder that cannot be
avoided in experimental devices due to fluctuations of
the width of layers or due to variations of the medium
parameters, such as the dielectric constant, magnetic per-
meability, or barrier height (for electrons) [2,3].

As is well known, the main quantity that absorbs the
influence of a disorder is the localization length lð!Þ (LL)
entirely determining transport properties in a 1D geometry
[4]. In contrast to many studies based on various numerical
methods, in this Letter we develop an analytical approach
allowing us to derive the unique expression for the LL that
is valid for photonic crystals, metamaterials, and semicon-
ductor superlattices. Another key point is that we explicitly
take into account possible correlations within a disorder
that may be imposed experimentally. As was recently
shown, both theoretically [5–8] and experimentally
[9,10], specific long-range correlations can significantly
enhance or suppress the localization length in desired
windows of frequency of incident waves.

Model.—We consider the propagation of an electromag-
netic wave of frequency ! through an infinite array of two
alternating a and b layers (slabs). The slabs are specified
by the dielectric constant "a;b, magnetic permeability�a;b,

refractive index na;b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"a;b�a;b

p
, impedance Za;b ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�a;b="a;b

q
, and wave number ka;b ¼ !na;b=c. We assume

that the z axis is directed along the array of bilayers
perpendicular to the stratification. Within the layers, the
electric field obeys the wave equation

�
d2

dz2
þ k2a;b

�
c a;bðzÞ ¼ 0; (1)

with two boundary conditions on the interfaces z ¼ zi
between slabs: c aðziÞ ¼ c bðziÞ and ��1

a c 0
aðziÞ ¼

��1
b c 0

bðziÞ.
A disorder is incorporated in the structure via the ran-

dom widths of the slabs ~aðnÞ ¼ aþ %aðnÞ and ~bðnÞ ¼ bþ
%bðnÞ. Here n enumerates the elementary ab cells, a and b
are the average widths of layers, and %aðnÞ and %bðnÞ stand
for small variations of the widths. In the absence of dis-
order, the array of slabs is periodic with the period d ¼
aþ b. The random sequences %aðnÞ and %bðnÞ are statis-
tically homogeneous with zero average h%a;bðnÞi ¼ 0 and

binary correlation functions defined by

h%jðnÞ%jðn0Þi ¼ h%2
j ðnÞiKjðn� n0Þ; j ¼ a; b;

h%aðnÞ%bðn0Þi ¼ h%aðnÞ%bðnÞiKabðn� n0Þ: (2)

In what follows, the average h. . .i is performed over the
whole array or due to the ensemble averaging, that is
assumed to be the same. The autocorrelators KjðrÞ as

well as the intercorrelator KabðrÞ are normalized to one:
Kað0Þ ¼ Kbð0Þ ¼ Kabð0Þ ¼ 1. The variances h%2

j ðnÞi are

positive, while h%aðnÞ%bðnÞi can be of arbitrary value. We
assume the positional disorder to be weak, k2j h%2

j ðnÞi � 1,

allowing us to use an appropriate perturbation theory. In
this case all transport properties are determined by the
randomness power spectra KaðkÞ, KbðkÞ, and KabðkÞ,
defined by the relation KðkÞ ¼ P1

r¼�1 KðrÞ expð�ikrÞ.
Method.—Our aim is to derive the expression for the LL

in the general case of either uncorrelated or correlated
disorder. To do this, we generalize the method developed
in Refs. [5–7] for more simple models. On the scale of
individual slabs, we present the solution of Eq. (1) in the
form of two maps for the nth a and b layer, respectively,
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with corresponding phase shifts ~’a;bðnÞ ¼ ’a;b þ �a;bðnÞ,
where ’a ¼ kaa, ’b ¼ kbb, and �a;bðnÞ ¼ ka;b%a;bðnÞ.
Then, by combining these maps with the boundary con-
ditions, we write the map for the whole nth elementary ab
cell:

xnþ1 ¼ ~Anxn þ ~Bnyn; ynþ1 ¼ � ~Cnxn þ ~Dnyn: (3)

Here xn ¼ c aðzanÞ and yn ¼ k�1
a c 0

aðzanÞ, the indices n
and nþ 1 stand for left and right edges of the nth cell, and

~An ¼ cos ~’aðnÞ cos ~’bðnÞ � Z�1
a Zb sin ~’aðnÞ sin ~’bðnÞ;

~Bn ¼ sin ~’aðnÞ cos ~’bðnÞ þ Z�1
a Zb cos ~’aðnÞ sin ~’bðnÞ;

~Cn ¼ sin ~’aðnÞ cos ~’bðnÞ þ ZaZ
�1
b cos ~’aðnÞ sin ~’bðnÞ;

~Dn ¼ cos ~’aðnÞ cos ~’bðnÞ � ZaZ
�1
b sin ~’aðnÞ sin ~’bðnÞ:

Equation (3) can be treated as the map of a linear os-
cillator with time-dependent parametric force [11]. With-
out disorder �a;bðnÞ ¼ 0, the trajectory xn; yn creates an

ellipse in the phase space ðx; yÞ that is an image of the un-
perturbed motion. It is convenient to make the transforma-
tion xn ¼ ��1Qn cos�� �Pn sin�, yn ¼ ��1Qn sin�þ
�Pn cos� to new coordinates Qn and Pn, in which the un-
perturbed trajectory occupies the circle Qnþ1¼Qncos�þ
Pn sin�, Pnþ1 ¼ �Qn sin�þ Pn cos� in the phase space
ðQ;PÞ. Here � and � can be found from Eq. (3), and �
determines the Bloch wave number � ¼ �=d arising in the
relation c ðzþ dÞ ¼ expði�dÞc ðzÞ for the periodic array

cos� ¼ cos’a cos’b � 1

2

�
Zb

Za

þ Za

Zb

�
sin’a sin’b: (4)

The perturbation in the normal coordinates Qn and Pn

results in a weak distortion of a circle and can be evaluated
in a relatively simple way. Specifically, we expand the

constants ~An, ~Bn, ~Cn, and ~Dn up to the second order in
the perturbation parameters �a;bðnÞ � 1. Then we trans-

form the coordinates xn and yn into Qn and Pn and pass to
action-angle variables Rn and �n via the standard trans-
formations, Qn ¼ Rn cos�n and Pn ¼ Rn sin�n. This al-
lows us to derive the relation between Rnþ1 and Rn:

R2
nþ1

R2
n

¼ 1þ �aðnÞVaðnÞ þ �bðnÞVbðnÞ þ �2
aðnÞWaðnÞ

þ �2
bðnÞWbðnÞ þ �aðnÞ�bðnÞWabðnÞ; (5)

where VaðnÞ, VbðnÞ, WaðnÞ, WbðnÞ, and WabðnÞ are some
functions of �n and the model parameters (details will be
presented elsewhere).

Localization length.—The LL can be expressed via the
Lyapunov exponent (LE) � ¼ d=lð!Þ defined by [11]

� ¼ 1

2

�
ln

�
Rnþ1

Rn

�
2
�
: (6)

Now we substitute Eq. (5) into Eq. (6) and perform the
averaging over both the disorder and phase �n. We assume
that the distribution of �n is homogenous within the first

order of approximation. This assumption is correct apart
from the band edges � ¼ 0;	 and the vicinity of the center
� ¼ 	=2 [7]. After quite cumbersome calculations we
arrive at the final result for the LE:

� ¼ $2

8sin2�
½
2

aKað2�Þsin2’b þ 
2
bKbð2�Þsin2’a

� 2
2
abKabð2�Þ sin’a sin’b cos��; (7)

where 
2
a ¼ k2ah%2

aðnÞi, 
2
b ¼ k2bh%2

bðnÞi, 
2
ab ¼

kakbh%aðnÞ%bðnÞi, and $ ¼ Za=Zb � Zb=Za is the mis-
matching factor. Expression (7) generalizes the results
obtained in Refs. [6,7,12] for particular cases and is in a
complete correspondence with them. Let us now discuss
the derived expression in some applications.
Conventional photonic layered media.—In this case all

parameters "a;b, �a;b, na;b, and Za;b are positive constants.

If the impedances of a and b slabs are equal Za ¼ Zb, the
mismatching factor $ in Eq. (7) vanishes and the perfect
transparency emerges (� ¼ 0) even in the presence of a
disorder. This conclusion is general [1] and does not de-
pend on the strength of disorder. In this case the stack
structure is effectively equivalent to the homogeneous
medium with the linear spectrum ��!.
For the Fabry-Perot resonances appearing when !=c ¼

sa	=naa or !=c ¼ sb	=nbb, with sa;b ¼ 1; 2; 3; . . . , the
factor sin’a or sin’b in Eq. (7) vanishes, thus giving rise to
the resonance increase of the LL. In a special case when
naa=nbb ¼ sa=sb, which can arise only at the edges of
spectral bands (� ¼ 0; 	), the LL gets a finite value. In the
vicinity of the bottom of the spectrum ! ¼ 0 and for a
white noise Ka ¼ Kb ¼ 1, Kab ¼ 0;�1, the LE obeys
the conventional dependence � / !2 for ! ! 0.
Of special interest are long-range correlations leading to

the divergence of the LL in the controlled frequency win-
dow. This effect is similar to that found in more simple 1D
models with correlated disorder [5–7,10]. For example,
one can have Ka ¼ Kb ¼ Kab ¼ 0 in some range of
frequency !. Thus, one can artificially construct an array
of random bilayers with such power spectra that abruptly
vanish within prescribed intervals of !, resulting in the
divergence of the LL. Also, specific correlations [13] in a
disorder can be used to cancel a sharp frequency depen-
dence that is due to the term sin2� in the denominator of
Eq. (7). Note that in the middle of spectral Bloch bands,
� ¼ 	=2, the third term vanishes, and the intercorrelations
do not influence the LL. The typical dependence �ð!Þ for
the conventional photonic bilayer stack is shown in Fig. 1.
Quarter stack layered medium.—This term is typically

used when two basic layers a and b have the same optical
width naa ¼ nbb (see, e.g., [1]). Since ’a ¼ ’b, in this
case the dispersion relation (4) takes the form

cos� ¼ 1� 1

2

ðZa þ ZbÞ2
ZaZb

sin2ðkaaÞ: (8)

One can see that, starting from the second band, the top of
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every even band coincides with the bottom of the next odd
band at � ¼ 0. The gaps arise only at � ¼ 	.

With the use of Eq. (8) the LE can be written as

� ¼ Zfð�Þ
8cos2ð�=2Þ ; Z ¼ ðZa � ZbÞ2

ZaZb

;

fð�Þ ¼ 
2
aKað2�Þ þ 
2

bKbð2�Þ � 2
2
abKabð2�Þ cos�:

(9)

Thus, the LE is finite or vanishes at � ¼ 0 and diverges at
� ¼ 	.

It is instructive to analyze the simplest case of correla-
tions when either �aðnÞ ¼ �bðnÞ (plus correlations) or
�aðnÞ ¼ ��bðnÞ (minus correlations). In this case one
gets fð�Þ ¼ 2
2

aKað2�Þð1� cos�Þ, respectively. As a re-
sult, for the LE one can obtain

�þ¼Z
2
aKað2�Þ
2

tan2
�

2
; ��¼Z
2

aKað2�Þ
2

: (10)

As one can see, �þ / !4 at the bottom of the spectrum
(! ! 0), in contrast to the conventional dependence � /
!2. Another nonconventional dependence � / !6 was
recently found [3] in a different layered model with left-
handed material. It is interesting that, for the minus corre-
lations and Kað2�Þ ¼ 1, the LE is quadratic in ! inside
any spectral band. In this case the total optical length is
constant within any pair of a and b layers, although the
width of both a and b layers fluctuates randomly. For such
correlations the quadratic ! dependence seems to survive
in the nonperturbative regime.

In Fig. 2, we have used the parameters for a silicon-air
stack with plus and minus correlations between two dis-
orders. In order to check our analytical predictions, in the

inset we present a numerical solution of Eq. (1) for the LE
in the third frequency band for N ¼ 4� 104 ab cells.
Metamaterials.—Let us now consider mixed systems in

which the a layer is a conventional right-handed (RH)
material and the b layer is a left-handed (LH) material.
Therefore, "a;�a; na > 0, whereas "b;�b; nb < 0; how-
ever, the impedances are positive: Za; Zb > 0.
Remarkably, in comparison with the conventional stack
structure, Eq. (7) for the LE stays the same. The only
difference is that now the sign ‘‘plus’’ stands at the second
term in Eq. (4) (note that’b � kbb ¼ �!jnbjb=c). Such a
‘‘minor’’ correction drastically changes the ! dependence
of the LE; see Fig. 1. Nevertheless, the LE obeys the
conventional dependence � / !2 when ! ! 0. Note also
that the ideal mixed stack ("a ¼ �a ¼ na ¼ 1, "b ¼
�b ¼ nb ¼ �1, Za ¼ Zb ¼ 1) has perfect transmission
� ¼ 0 even in the presence of a positional disorder.
It is important that in reality the permittivity "bð!Þ and

permeability �bð!Þ are !-dependent [1]. This fact is
crucial in applications. In particular, the mismatching fac-
tor $ in Eq. (7) can vanish for specific values of ! only,
thus resulting in a resonancelike dependence for the trans-
mission. Also, for a typical frequency dependence, the
refractive index of b slabs can be imaginary giving rise
to an emergence of a new gap at the origin of spectrum
! ¼ 0, in contrast to conventional photonic crystals. It can
be seen that in many aspects the wave transport through the
bilayered metamaterials resembles that of the electrons
through double-barrier structures.
Electrons.—Our approach can be also applied to the

electron transport through the structures with alternating
potential barriers of amplitudes Ua and Ub and slightly
perturbed widths. One possible application is the fabrica-
tion of nanostructured electronic systems (see, for ex-
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FIG. 2 (color online). Lyapunov expo-
nent versus frequency for the quarter
stack layered medium, for the plus cor-
relations (left) and minus correlations
(right); see Eqs. (8) and (10). Here na ¼
3:47 (silicon), d ¼ 1 �m, a ¼
0:224 �m, h%2

aðnÞi¼3:75�10�5 �m2,
c ¼ 1:0, and Ka ¼ 1.
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FIG. 1 (color online). Lyapunov ex-
ponent versus frequency in arbitrary
units for $2n2ah%2

aðnÞi=ð2c2Þ 	 12:28,
$2n2bh%2

bðnÞi=ð2c2Þ 	 0:27 and naa=c ¼
1:6, nbb=c ¼ 0:4. Left: Photonic layered
medium, Eqs. (4) and (7). Right: The
RH-LH bilayers with plus in Eq. (4).

PRL 102, 203901 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
22 MAY 2009

203901-3



ample, Ref. [14] and references therein). The stationary
1D Schrödinger equation for the wave functions c a;bðzÞ
of an electron with effective masses ma and mb inside
the barriers and total energy E can be written in the form

of Eq. (1), where ka ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2maðE�UaÞ

p
=@ and kb ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mbðE�UbÞ
p

=@. Another change, �a;b ! ma;b, should

be done in the boundary condition on hetero-interfaces:
m�1

a c 0
aðziÞ ¼ m�1

b c 0
bðziÞ. Correspondingly, Zb=Za ¼

kamb=kbma in the dispersion relation (4) and in Eq. (7)
for the LE.

If the energy E is smaller than the heights of both
barriers E<Ua;Ub, the electron wave numbers are imagi-
nary. As a consequence, the electron states are strongly
localized and the structure is not transparent. When Ua <
E<Ub, the tunneling propagation of electrons emerges.
In this case ka is real, while kb is imaginary. Therefore, the
electron moves freely within any a barrier and tunnels
through the b barriers. Thus, the expressions (7) for � and
(4) for � have to be modified according to the change:
kb ! ijkbj and sinðkbbÞ ! i sinhðjkbjbÞ. As a result, the
increase of the LL due to Fabry-Perot resonances arises
only due to the second and third terms of Eq. (7). Note that
from our general expression (7) one can easily get the LE
for a particular case of an array with deltalike potential
barriers, analyzed in Ref. [6].

For the overbarrier scattering, when Ua < Ub < E,
both wave numbers ka and kb are positive, and the electron
transport is similar to that for the conventional photonic
stack, however, with dispersive parameters. The example
of energy dependence of the LE is given in Fig. 3. It is
interesting that when E ¼ ðUbma �UambÞ=ðma �mbÞ,
an electron does not change its velocity in the barriers
@ka=ma ¼ @kb=mb, although its momentum changes:
@ka > @kb. The LE vanishes in this case. This effect is
equivalent to that in a homogeneous medium with perfect
transmission.

Conclusion.—We have developed the method allowing
us to derive the expression for the localization length l for
quasiperiodic bilayer structures whose widths are weakly
perturbed. The knowledge of l is very important in prac-

tice, since it is directly related to the transmission coeffi-
cient T for finite samples of size L, according to the famous
relation hlnTi ¼ �2L=l. Our results can be applied to both
conventional photonic crystals and metamaterials, as well
as to semiconductor superlattices. The distinctive peculiar-
ity of the approach is that it takes into account possible
correlations in the disorder that can lead to anomalous
frequency (energy) dependence of transport properties.
Because of the correlations, one can significantly enhance
or suppress the transmission/reflection through the bilay-
ered devices within the prescribed windows of frequency
(energy) of electromagnetic (electron) waves. The results
may have a strong impact for the fabrication of a new class
of disordered optic crystals, left- and right-handed meta-
materials, and electron nanodevices with selective trans-
mission and/or reflection.
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FIG. 3 (color online). Lyapunov exponent versus energy for
electrons in a bilayered structure. Here 2ma=@

2 ¼ 2mb=@
2 ¼ 1,
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