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Memory for Light as a Quantum Process
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We report complete characterization of an optical memory based on electromagnetically induced
transparency. We recover the superoperator associated with the memory, under two different working
conditions, by means of a quantum process tomography technique that involves storage of coherent states
and their characterization upon retrieval. In this way, we can predict the quantum state retrieved from the
memory for any input, for example, the squeezed vacuum or the Fock state. We employ the acquired
superoperator to verify the nonclassicality benchmark for the storage of a Gaussian distributed set of

coherent states.
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Introduction.—Quantum memory for light is an essential
technology for long-distance quantum communication [1]
and for any future optical quantum information processor.
Recently, several experiments have shown the possibility
to store and retrieve nonclassical states of light such as the
single photon [2,3], entangled [4] and squeezed vacuum
[5,6] states using coherent interactions with an atomic
ensemble.

In order to evaluate the applicability of a quantum-
memory apparatus for practical quantum communication
and computation, it is insufficient to know its performance
for specific, however complex, optical states, because in
different protocols, different optical states are used for
encoding quantum information [1,7]. Practical applications
of memory require answering a more general question:
How will an arbitrary quantum state of light be preserved
after storage in a memory apparatus?

Here we answer this question by performing complete
characterization of the quantum process associated with
optical memory based on electromagnetically induced
transparency (EIT) [8]. Memory characterization is
achieved by storing coherent states (i.e., highly attenuated
laser pulses) of different amplitudes and subsequently
measuring the quantum states of the retrieved pulses. It
has been shown previously that tomographic reconstruc-
tion of the weak coherent state retrieved from memory can
test its quantum character [9]. Here we show that executing
such a procedure for multiple coherent states provides a
prediction for the retrieved state of any arbitrary input and
it also permits verifying the memory performance against
any theoretical benchmark.

Coherent-state quantum process tomography.—We can
define complete characterization of an optical quantum
memory as the ability to predict the retrieved quantum
state £(p) when the stored input state p is known. This is
a particular case of the quantum ‘‘blackbox” problem,
which is approached through a procedure called quantum
process tomography (QPT) [10]. QPT is based on the fact
that every quantum process (in our case, optical memory)
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is a linear map on the linear space [L(H) of density matrices
over the Hilbert space H on which the process is defined.
The associated process can thus be characterized by con-
structing a spanning set of “probe” states in L(H) and
subjecting each of them to the action of the quantum
blackbox. If we measure the process output é’(ﬁi) for
each member p; of this spanning set, we can calculate
the process output for any other state p = > ,a;p; accord-
ing to

E(p) = X aié(py). (1)

The challenge associated with this approach is the con-
struction of the appropriate spanning set, given the infinite
dimension of the optical Hilbert space and the lack of
techniques for universal optical state preparation. For this
reason, characterizing memory for light, that is not limited
to the qubit subspace, is much more difficult than memory
for superconducting qubits, which has been reported re-
cently [11]. Our group has recently developed a process
characterization technique that overcomes these challenges
[12]. Any density matrix p of a quantum-optical state can
be written as a linear combination of density matrices of
coherent states |a) according to the optical equivalence
theorem

p=2 [ Pi@ladalda @)

where Pﬁ(a) is the state’s Glauber-Sudarshan P function
and the integration is performed over the entire complex
plane. Although the P function is generally highly singular,
any quantum state can be arbitrarily well approximated by
a state with an infinitely smooth, rapidly decreasing P
function [13]. Therefore, by measuring how the process
affects coherent states, one can predict its effect on any
other state. The advantage of such approach [which we call
coherent-state quantum process tomography (CSQPT)] is
that it permits complete process reconstruction using a set
of “probe” states that are readily available from a laser.
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Experimental setup.—We performed CSQPT on optical
memory [6] realized in a warm 8’Rb vapor by means of
electromagnetically induced transparency (Fig. 1). The
vapor temperature is kept constant at 65 °C. The signal
field is resonant with the |5S1/2, F=1o |5Pl/2, F=1)
transition at 795 nm and is produced by a continuous-wave
Ti:sapphire laser. An external cavity diode laser, phase
locked at 6834.68 MHz to the signal laser [14] serves as
the EIT control field source, and is resonant with the
IS, o F= 2)= P, o F= 1) transition. The fields are red
detuned from resonance by 630 MHz in order to improve
the storage efficiency. The control field power is 5 mW and
the beam spatial profile is mode matched with the signal
beam to a waist of 0.6 mm inside the rubidium cell. Signal
and control fields are orthogonally polarized; they are
mixed and separated using polarizing beam splitters.

The two-photon detuning A, between the signal and
control fields is modified by varying the frequency of the
control field laser through the phase lock circuit, while an
acousto-optical modulator (AOM) is used to switch on and
off the control field intensity. We analyzed two different
experimental conditions characterized by A, =0 and
0.54 MHz (with the full width at half maximum of the
EIT window being 1.5 MHz).

The input pulse is obtained by chopping the continuous-
wave signal beam via an AOM to produce 1 wus pulses
[Fig. 2(c)] with a 100 kHz repetition rate. A second AOM
is used to compensate for the frequency shift generated by
the first. Transfer of the light state into the atomic ground
state superposition (atomic spin wave) is accomplished by
switching the control field off for the storage duration of
7 =1 us when the input pulse is inside the rubidium cell.

We performed full state reconstruction of both the input
and retrieved fields by time domain homodyne tomography
[15]. A part of the Ti:sapphire laser beam serves as a local
oscillator for homodyne detection; while its phase is
scanned via a piezoelectric transducer, the homodyne cur-
rent is recorded with an oscilloscope. For every state,
50000 samples of phase and quadrature are measured and
processed by the maximum likelihood algorithm [16,17],
estimating the state density matrix in the Fock basis.

Tomography of quantum memory.—In order to deter-
mine the coherent state mapping necessary for reconstruct-
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FIG. 1 (color online). Schematic of the experimental setup
used to characterize the process associated with the quantum
memory. PBS, polarizing beam splitter.

ing the process, we measured 10 different coherent states
|@;) with mean photon numbers ranging from 0 to 285
along with their corresponding retrieved states &(|a;)a;|)
[Figs. 2(a) and 2(b)]. Subsequently, we applied polynomial
interpolation to determine the value of &(|a)(a|) for any
value of « in the range 0-16.9. Tomographic reconstruction
of these highly displaced states requires good phase stabil-
ity between the signal and local oscillator. Phase fluctua-
tions produce an artifact in the reconstruction in the form
of amplitude dependent increase in the phase quadrature
variance. In our measurements, the reconstructed input
states |a;) resemble theoretical coherent states with a
fidelity higher than 0.999 for mean photon values up to
150 [Figs. 2(a) and 2(b)].

By inspecting the Wigner functions of the input and
retrieved states, one can clearly notice the detrimental
effects of the memory. First, there is attenuation of the
amplitude by a factor of 0.41 = 0.01 for the signal field in
two-photon resonance with the control, which increases to
a factor of 0.33 = 0.02 when a two-photon detuning of
A, = 0.54 MHz is introduced. This corresponds to a mean
photon number attenuation by factors of 0.17 = 0.02 and
0.09 £ 0.01, respectively, which are comparable with the
value of 0.18 obtained in cold atoms [4] with a similar
scheme. Note that in the case of nonzero two-photon
detuning, the attenuation is greater than the factor of 0.14
obtained in classical intensity measurement [Fig. 2(c)].
This is because the temporal mode of the retrieved state
is slightly chirped, and could not be perfectly matched to
the mode of the local oscillator.
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FIG. 2 (color online). Wigner functions of input coherent
states with two different amplitudes and the corresponding re-
trieved states E(Ja)a,|) and E(Ja,){a@,|). The input state am-
plitudes are oy =2.3, @, = 10.3 (a) and oy =4.5, a, = 10.9 (b).
Two-photon detunings between the control and signal fields are
0.54 MHz (a) and 0 MHz (b). Input pulse (black dashed line) and
retrieved light (red solid line) (c). Variance of the phase quad-
rature as a function of the retrieved state amplitude (d).
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Second, retrieved coherent states experience an increase
in the phase quadrature variance that depends quadratically
on the state amplitude. This effect produces an ellipticity in
the retrieved state Wigner function [Figs. 2(a) and 2(b)]
and can be attributed to the noise in the phase lock between
the signal and control lasers [14]. Fluctuations A ¢ of the
relative phases between the two interacting fields random-
ize the phase of the retrieved signal field with respect to the
local oscillator. Assuming a Gaussian distribution for A ¢,
with zero mean and variance 0'%1,, the variance of the phase

quadrature can be expressed as

1 z iy
o =§+%(l — e %), 3)
where ¢ is the mean amplitude. We fit our experimental
data with Eq. (3) and estimate an 11° standard deviation
for A¢ [Fig. 2(d)], in agreement with independent esti-
mates [14].

The third detrimental effect preventing the atomic en-
semble from behaving as a perfect memory is the popula-
tion exchange between atomic ground states [18,19]. In
addition to limiting the memory lifetime, this exchange
generates spontaneously emitted photons in the signal field
mode adding an extra noise that thermalizes the stored light
by increasing the quadrature variance independently of the
input amplitude and phase. We measured the extra noise
from the quadrature variance of retrieved vacuum states
£(10)0]) and found it to equal 0.185 dB when both fields
were tuned exactly at the two-photon resonance, which
corresponds to the mean photon number in the retrieved
mode equal to 7 = Tr[a E(0OX0])] = 0.022. We experi-
mentally found that this noise decreases monotonically
with the two-photon detuning and reaches a value of
0.05 dB (corresponding to 7= 0.005) with A, =
0.54 MHz. For this reason it is beneficial to implement
storage of squeezed light in the presence of two-photon
detuning, in spite of higher losses. The physical relation
between two-photon detuning and extra noise is currently
under investigation.

In the presence of the two-photon detuning, the evolu-
tion of the atomic ground state superposition brings about a
phase shift of the retrieved state by 27A,7 = 200° with
respect to the input as is visible in Fig. 2(a).

Based on the information collected from the storage of
coherent states, we reconstruct the memory process in the
x matrix representation [20,21], which in the Fock basis
has the form

xp = (KIE(nYml)|D), 4)

where ;)" is the rank-4 tensor comprising full information
about the process and |k), |I), |m), |n) are the photon
number states [22]. The details of calculating the process
tensor are described elsewhere [12]; Fig. 3 displays the
diagonal subset Xf,’,,km of its elements. In the histograms,
each set of bars with the same color reproduces the photon

number distribution in the retrieved state when a number

state |k) is stored. For example, storage of the vacuum state
leads to mainly the vacuum being retrieved, with a small
contribution of higher number states due to the extra noise.
When the single photon Fock state is stored, primarily a
mix of vacuum and one photon is retrieved. In this case, the
single photon contribution is greater for the zero two-
photon detuning [Fig. 3(a)] because of the higher storage
efficiency.

Performance tests.—In order to verify the accuracy of
our process reconstruction, we have used it to calculate the
effect of storage on squeezed vacuum with A, =
0.54 MHz, as studied in a recent experiment of our group
[6], and with A, = 0 MHz. We applied the superoperator
tensor measured with CSQPT to the squeezed vacuum pro-
duced by a subthreshold optical parametric amplifier with a
noise reduction in the squeezed quadrature of —1.86 dB
and noise amplification in the orthogonal quadrature of
5.38 dB (i.e., the same state as used as the memory input
in Ref. [6]). In this way, we obtained a prediction for the
state retrieved from the memory, which we then compared
with the results of direct experiments. This comparison
yields quantum mechanical fidelities of 0.9959 = 0.0002
and 0.9929 = 0.0002 for the two-photon detunings of
A, = 0.54 MHz and A, = 0, respectively (Fig. 4).

As discussed above, zero detuning warrants lower losses
(thus a higher amplitude of the phase dependent quadrature
noise) and no phase rotation, but higher excess noise (thus
no squeezing in the retrieved state). The two-photon reso-
nant configuration offers a better fidelity if the single
photon state is stored [2,3]. The effect of longer storage
times on the degradation of squeezing is currently under
investigation, but preliminary results showed a decay time
of the noise quadrature of 1.3 us. Longer storage time, of
the order of millisecond, could be achieved using clock
states of 8’Rb [23], albeit those experiments showed a low
overall retrieval efficiency.

In addition to the ability to predict the output of the
memory for any input state, our procedure can be used to
estimate the performance of the memory according to any
theoretical benchmark. As an example, we analyze the
performance of our memory with respect to the classical
limit on average fidelity associated with the storage of
coherent states with amplitudes distributed in phase space
according to a Gaussian function of width 1/A [24]. This

FIG. 3 (color online). The diagonal elements of the process
tensor x*K.. measured by CSQPT in the Fock basis for
A, =0 (a) and 0.54 MHz (b).
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FIG. 4 (color online). Comparison of the experimentally mea-
sured squeezed vacuum states retrieved from the quantum mem-
ory and those predicted with CSQPT. For each case, the Wigner
function and the quadrature variance as a function of the local
oscillator phase are shown. (a) Experimental measurement [6]
with A, = 0.54 MHz. (b) Prediction with A, = 0.54 MHz.
(¢) Experimental measurement with A, = 0. (d) Prediction
with A, = 0.

limit as a function of A is given by
+00 A 1+A

F()=2A [ e (alé(a)allayada =~ (5)
0 2+ A

From CSQPT data, we evaluate the average fidelity asso-
ciated with our memory for both values of A, (Fig. 5). Both
configurations show nonclassical behavior. The higher
value of average fidelity corresponds to A, =0 and is
explained by a higher storage efficiency.

Average fidelity

1 2 3 4 5
Inverse Gaussian width ()
FIG. 5 (color online). Average fidelity of the quantum memory
for a Gaussian distributed set of coherent states. Blue empty (red
filled) dots show the average fidelity calculated from the CSQPT
experimental data for A, = 0 (0.54 MHz). The experimental

uncertainty is 0.0002. The solid line shows the classical limit
[24].

Summary.—We have demonstrated complete character-
ization of an EIT-based quantum memory by CSQPT. This
procedure allows one to predict the effect of the memory
on an arbitrary quantum-optical state, and thus provides the
“specification sheet” of quantum-memory devices for fu-
ture applications in quantum information technology.
Furthermore, our results offer insights into the detrimental
effects that affect the storage performance and provide
important feedback for the device optimization. We antici-
pate this procedure to become standard in evaluating the
suitability of memory apparatuses for practical quantum
telecommunication networks.
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