
Two-Qubit State Tomography Using a Joint Dispersive Readout

S. Filipp,1,* P. Maurer,1 P. J. Leek,1 M. Baur,1 R. Bianchetti,1 J.M. Fink,1 M. Göppl,1 L. Steffen,1 J.M. Gambetta,2
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(Received 17 December 2008; published 22 May 2009)

Quantum state tomography is an important tool in quantum information science for complete

characterization of multiqubit states and their correlations. Here we report a method to perform a joint

simultaneous readout of two superconducting qubits dispersively coupled to the same mode of a

microwave transmission line resonator. The nonlinear dependence of the resonator transmission on the

qubit state dependent cavity frequency allows us to extract the full two-qubit correlations without the need

for single-shot readout of individual qubits. We employ standard tomographic techniques to reconstruct

the density matrix of two-qubit quantum states.
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Quantum state tomography allows for the reconstruction
of an a priori unknown state of a quantum system by
measuring a complete set of observables [1]. It is an
essential tool in the development of quantum information
processing [2] and has first been used to reconstruct the
Wigner function [3] of a light mode [4] by homodyne
measurements, as suggested in a seminal paper by Vogel
and Risken [5]. Subsequently, state tomography has been
applied to other systems with a continuous spectrum, for
instance, to determine vibrational states of molecules [6],
ions [7], and atoms [8]. Later, techniques have been
adapted to systems with a discrete spectrum, for example,
nuclear spins [9], polarization entangled photon pairs [10],
electronic states of trapped ions [11], states of hybrid atom-
photon systems [12], and spin-path entangled single neu-
trons [13].

Recent advances have enabled the coherent control of
individual two-level systems embedded in a solid-state
environment. Numerous experiments have been performed
with superconducting quantum devices [14], manifesting
the rapid progress and the promising future of this ap-
proach for quantum information processing. State tomo-
graphic methods [15] have been used to reconstruct density
matrices of single qubits [16,17]. Even though a number of
experiments showing coherent qubit-qubit interactions in
superconducting circuits have already been performed
[18–25], only a few have been able to reconstruct the full
two-qubit density matrix. In fact, two-qubit states have
been reconstructed by correlating high fidelity measure-
ments obtained with individual qubit state detection [23].
Here we demonstrate the tomographic reconstruction of
two-qubit states employing only a single measurement
apparatus. In a superconducting circuit implementation
of cavity quantum electrodynamics [26–28], we realize
such a joint readout by measuring the transmission of a
microwave frequency resonator strongly coupled to both

qubits [24]. We are able to extract two-qubit correlations
from an averaged measurement that acts simultaneously on
the qubits. Instead of correlating measurement outcomes of
individual qubit populations in each single-shot experi-
ment, as routinely done [10–13,23], the averaged resonator
response alone allows for full state tomography. This pos-
sibility has also been pointed out in [24].
In the setup shown in Fig. 1, two superconducting qubits

are coupled to a transmission line resonator operating in
the microwave regime [24]. Because of the large dipole
moment of the qubits and the large vacuum field of the
resonator, the strong coupling regime with g1;2 � �; �1 is

reached. g1=2� � g2=2� ¼ 133 MHz denotes the similar
coupling strengths of both qubits and �=2� � 1:7 MHz
and �1=2� � 0:25 MHz the photon and the qubit decay
rates, respectively. The qubits are realized as transmons
[29], a variant of a split Cooper pair box [30] with expo-
nentially suppressed sensitivity to 1=f charge noise [31].
Their transition frequencies are tuned separately by exter-
nal flux bias coils to !a1=2� ¼ 4:5 GHz and !a2=2� ¼
4:85 GHz. Both qubits can be addressed individually
through local gate lines using amplitude and phase modu-
lated microwaves at frequencies !d1 and !d2. Readout is
accomplished by measuring the transmission of micro-
waves applied to the resonator input at frequency !m close
to the fundamental resonator mode !r=2� ¼ 6:442 GHz.
At large detunings �j � !r �!aj of both qubits from

the resonator, the dispersive qubit-resonator interaction
gives rise to a qubit state dependent shift of the resonator
frequency. In this dispersive limit and in a frame rotating at
!m, the relevant Hamiltonian reads [32]

H ¼ @ð�rm þ �1�̂z1 þ �2�̂z2Þâyâ
þ @

2

X

j¼1;2

ð!aj þ �jÞ�̂zj þ @�ðtÞðây þ âÞ; (1)
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where�rm � !r �!m is the detuning of the measurement
drive from the resonator frequency. The cavity pulls �1 ¼
�1 MHz and �2 ¼ �1:5 MHz are determined by the
detuning �1;2, the coupling strength g1;2, and the design

parameters of the qubit [29]. The last term in Eq. (1)
models the measurement drive with amplitude �ðtÞ.

The operator �̂ � �1�̂z1 þ �2�̂z2, which describes the
dispersive shift of the resonator frequency, is linear in both
qubit states. It does not contain two-qubit terms like �̂z1�̂z2

from which information about the qubit-qubit correlations
could be obtained. However, in circuit QED, instead of
measuring frequency shifts directly, we record quadrature
amplitudes of microwave transmission through the resona-
tor which depend nonlinearly on these shifts. The average

values of the field quadratures hÎðtÞi ¼ ½�̂ðtÞðây þ âÞ� and
hQ̂ðtÞi ¼ iTr½�̂ðtÞðây � âÞ� are determined from the am-
plified voltage signal at the resonator output in a homodyne
measurement, where �̂ðtÞ denotes the state of both qubits
and resonator field.

These expressions can be evaluated by assuming an
initially separable state �̂ð0Þ ¼ j0ih0j � �̂qð0Þ for the qu-

bits [�̂qð0Þ] and the resonator [j0ih0j]. Taking �̂qð0Þ ¼P
�;�0p��0 ð0Þj�ih�0j, with � ¼ fee; eg; ge; ggg, the com-

bined qubits-resonator state at time t under Eq. (1) and
cavity damping can be expressed as �̂ðtÞ ¼P

�;�0p��0 ðtÞj���ih�0��0 j [33]. In this expression, �� is

the coherent state amplitude given that the qubits are in
state j�i and satisfies _�� ¼ �ið�rm þ h�j�̂j�iÞ�� �
i�� ���=2. Since this is a quantum nondemolition mea-

surement [27], p��ðtÞ ¼ p��ð0Þ, and the off-diagonal
terms p��0 ðtÞ contain an ac-Stark shift and dephasing,
both induced by the measurement.
Taking the trace on the resonator space yields

hÎðtÞi; hQ̂ðtÞi ¼ Trq½�̂qð0ÞM̂I;QðtÞ�, where M̂I;QðtÞ ¼P
�h��ðtÞjÎ; Q̂j��ðtÞij�ih�j and Trq denotes the partial

trace over the qubits. In the steady state we find

M̂ I ¼ ��
2ð�rm þ �̂Þ

ð�rm þ �̂Þ2 þ ð�=2Þ2 ; (2)

M̂ Q ¼ ��
�

ð�rm þ �̂Þ2 þ ð�=2Þ2 ; (3)

demonstrating that the measurement operators are non-

linear functions of �̂. Thus, M̂I;Q comprises in general

also two-qubit correlation terms proportional to �̂z1�̂z2,
which allow one to reconstruct the full two-qubit state.
In our experiments the phase of the measurement mi-

crowave at frequency �rm ¼ ð�1 þ �2Þ is adjusted such
that theQ quadrature of the transmitted signal carries most
of the signal when both qubits are in the ground state. The
corresponding measurement operator can be expressed as

M̂ ¼ 1
4ð	00îdþ 	10�̂z1 þ 	01�̂z2 þ 	11�̂z1�̂z2Þ; (4)

with 	ij ¼ ��� þ ð�1Þj��þ þ ð�1Þi�þ� þ
ð�1Þiþj�þþ and

��� ¼ ��fð�=2Þ2 þ ð�rm � �1 � �2Þ2g�1=2 (5)

representing the qubit state dependent Q-quadrature am-
plitudes of the resonator field in the steady-state limit and
for an infinite qubit lifetime [Fig. 2(a)].
Since we operate in a regime where the qubit relaxation

cannot be neglected, the steady-state expression is of lim-
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FIG. 2 (color online). (a) Q quadrature of the resonator field
for the qubits in states gg, eg, ge, and ee as a function of the
detuning �rm. Tomography measurements have been performed
at �rm ¼ ð�1 þ �2Þ indicated by an arrow. (b) Measured (data
points) time evolution of the Q quadrature for the indicated
initial states compared to numerically calculated responses (solid
lines). All parameters have been determined in independent
measurements.
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FIG. 1. Schematic of the experimental setup with two qubits
coupled via the capacitances Cg to a microwave resonator

operated at a temperature of about 20 mK. The transition
frequencies of the qubits are adjusted by external fluxes �1

and �2. The resonator-qubit system is probed through the input
and output capacitances Cin and Cout, respectively, by a micro-
wave signal at frequency !m. Additionally, local control of the
qubits is implemented by capacitively coupled signals !d1 and
!d2, which are phase and amplitude modulated using in-phase/
quadrature (I/Q) mixers. The output signal is detected in a
homodyne measurement at room temperature.
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ited practical use. The decay of a qubit to its ground state
changes the resonance frequency of the resonator and
consequently limits the readout time to �1=�1. A typical
averaged time trace of the resonator response for pulsed
measurements is shown in Fig. 2(b), similar to the data
presented in Ref. [24]. The qubits are prepared initially in
the states jeei, jegi, jgei, and jggi, respectively, using the
local gate lines. The time dependence of the measurement
signal is determined by the rise time of the resonator and
the decay time of the qubits. It is in excellent agreement
with calculations [solid lines in Fig. 2(b)] of the dynamics
of the dispersive Jaynes-Cummings Hamiltonian [32,34]
using the parameter values as stated above. Because of the
quantum nondemolition nature of the measurement [27],

M̂ remains diagonal in the instantaneous qubit eigenbasis
during the measurement process, and the integrated signal

can be used to define the realistic measurement operator M̂0
by replacing the ��� in Eq. (5) with the signal integrated
from the start of the measurement tm to the final time T,

�0�� ¼ 1=N
R
T
tm
½hM̂ðtÞi�� � hM̂ðtÞi���dt with the ground

state response hM̂ðtÞi�� subtracted. The normalization
constant N is chosen such that �0þ� ¼ 1 and the measure-
ment time T � tm ¼ 2 
s.

To reconstruct the combined state �̂q of both qubits, a

suitable set of measurements has to be found to determine
unambiguously the 16 coefficients rij of the density matrix

�̂q ¼
P

3
i;j¼0 rij�̂i � �̂j, with the identity �̂0 ¼ îd and

f�̂1; �̂2; �̂3g ¼ f�̂x; �̂y; �̂zg. Such a complete set of mea-

surements is constructed by applying appropriate single-

qubit rotations Ûk 2 SUð2Þ � SUð2Þ before the measure-

ment in order to measure the expectation values hM̂ki ¼
Tr½M̂Ûk�̂qÛ

y
k � ¼ Tr½Ûy

k M̂Ûk�̂q�. The latter equality de-

fines the set of measurement operators M̂k � Ûy
k M̂Ûk.

This illustrates again that a measurement operator M̂ in-
volving nontrivial two-qubit terms �̂i1�̂j2 is necessary for

state tomography. In fact, single-qubit operations Ûk ¼
Ûk1 � Ûk2 alone cannot be used to generate correlation

terms since Ûy
k ðîd � �̂zÞÛk ¼ îd � ðÛy

k2�̂zÛk2Þ, for in-

stance. As Tr½ð�̂k � �̂lÞð�̂m � �̂nÞ� ¼ �km�ln, some coef-
ficients rij of the density matrix �̂q would not be

determined in an averaged measurement.
To identify the coefficients rij we perform 16 linearly

independent measurements. The condition for the com-
pleteness of the set of tomographic measurements is the
nonsingularity of the matrix A defined by the relation

hM̂ki ¼
P

15
l¼0 Aklrl between the expectation values hM̂ki

and the coefficients of the density matrix rl with l � iþ
4j. Our pulse scheme for the state tomography is shown in
Fig. 3. First, a given two-qubit state is prepared. Then a
complete set of measurements is formed by applying the
combination of fð�=2Þx; ð�=2Þy; ð�Þ; idg pulses to both qu-

bits over their individual gate lines using amplitude and
phase controlled microwave signals. The desired rotation

angles are realized with an accuracy better than 4	. Finally,
the measurement drive is applied at !m ¼ 6:445 GHz
corresponding to the maximum transmission frequency of
the resonator with both qubits in the ground state.

To determine the measurement operator M̂0, � pulses
are alternately applied to both qubits to yield signals as
shown in Fig. 2(b). From these data the coefficients

ð	0
00; 	

0
01; 	

0
10; 	

0
11Þ ¼ ð0:8;�0:3;�0:4;�0:1Þ of M̂0 in

Eq. (4) are deduced. The nonvanishing 	0
11, which quanti-

fies the contribution of the �̂z � �̂z two-qubit correlation
term, allows for a measurement of arbitrary, entangled and
separable, quantum states. As an example of this state
reconstruction, in Fig. 4(a) the extracted density matrix

�̂q of the product state j�sepi ¼ 1=
ffiffiffi
2

p ðjgi þ jeiÞ �
1=

ffiffiffi
2

p ðjgi þ ijeiÞ is shown. Using sideband transitions

[32,35], the Bell state j�i ¼ 1=
ffiffiffi
2

p ðjgi � jgi � ijei � jeiÞ
has been prepared by a sequence of pulses on the blue
sidebands of both qubits [36]. Its reconstructed density
matrix is shown in Fig. 4(b). 6:6
 104 and 6:6
 105

records have been averaged, respectively, for each of the
16 tomographic measurement pulses to determine the ex-

pectation values hM̂0
ki for the two states. The corresponding

ideal state tomograms are depicted in Figs. 4(c) and 4(d).
To avoid unphysical, non-positive-semidefinite, density
matrices originating from statistical uncertainties, all to-
mography data have been processed by a maximum like-
lihood method [37,38]. The corresponding fidelities

F c � hc j�̂qjc i1=2 are F sep ¼ 95% and F�� ¼ 74%.

These results are in close agreement with theoretically
expected fidelities when taking finite photon and qubit
lifetimes into account. In particular, the loss in fidelity of
the Bell state is not due to measurement errors but due to
the short photon lifetime [36]. Note that our method has
also been successfully applied to perform readout in a
circuit QED implementation of quantum algorithms [39].
In conclusion, we have presented a method to jointly and

simultaneously read out the quantum state of two qubits
dispersively coupled to a microwave resonator. In a mea-
surement of the field quadrature amplitudes of microwaves
transmitted through the resonator, each photon carries
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FIG. 3 (color online). Pulse scheme for tomography; see text.
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information about the state of both qubits. In this way the
two-qubit correlations can be extracted from an averaged
measurement of the transmission amplitude without the
need for single-shot and single-qubit readout, which en-
ables the reconstruction of any correlated two-qubit state
from a quantum nondemolition measurement. This method
can also be extended to multiple qubits coupled to the same
resonator mode.
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FIG. 4 (color online). Real and imaginary parts of reconstructed density matrices of (a) the product state j�sepi ¼ 1=
ffiffiffi
2

p ðjgi þ
jeiÞ � 1=

ffiffiffi
2

p ðjgi þ ijeiÞ and (b) the Bell state j�i ¼ 1=
ffiffiffi
2

p ðjgi � jgi � ijei � jeiÞ. Ideal tomograms are shown in (c) and (d).
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