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We study the current of particles on a lattice, where to each site a different hopping probability has been

associated and the particles can move only in one direction. We show that the queueing of the particles

behind a slow site can lead to a first-order phase transition, and derive analytical expressions for the

configuration of slow sites for this to happen. We apply this stochastic model to describe the translation of

mRNAs. We show that the first-order phase transition, uncovered in this work, is the process responsible

for the classification of the proteins having different biological functions.
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Nonequilibrium statistical physics is a main subject of
much current research. Within nonequilibrium statistical
physics, the totally asymmetric exclusion process plays a
paradigmatic role [1]. It describes a driven lattice gas in
one dimension, in which particles are injected with a
probability �, then hop from one lattice site to the next
with certain probability p, until they reach the end of the
lattice, where they are then released at a rate �. The totally
asymmetric exclusion process has been intensively studied
not only to describe physical driven diffusive processes,
but also biological processes such as inhomogeneous
growth [2] and translation [3–5].

In this Letter, we generalize the totally asymmetric
exclusion process, associating to every lattice site i a
different hopping probability pi. Additionally, we consider
a sequential rather than a random update rule for the
reasons stated later. We show that, depending on the con-
figuration of the hopping probabilities in the lattice, the
current of particles can undergo a phase transition of first
order. This phase transition, as it will be shown later, has
direct experimental consequences. We derive analytical
expressions that yield the necessary conditions for the
configuration to have a first-order phase transition. In the
absence of clusters of slow sites (sites with a low hopping
probability), the position of the slowest site in the lattice
determines whether the current will be subject to a phase
transition. In the presence of clusters of slow sites, the
situation is more complex: even though the sites constitut-
ing one cluster are faster than the slowest site of the lattice,
the cluster can become rate limiting for the current of
particles, depending on the size of the cluster and the ratio
between pmin and q. Here pmin denotes the smallest hop-
ping probability and q the hopping probability of each of
the sites forming the cluster. Crucially, the position in the
lattice of the site or sites constituting the rate limiting step
determines the existence of a first-order phase transition.

The numerical implementation of the generalized totally
asymmetric exclusion process is given by the following
two rules: (i) advance with probability pi if site iþ 1 is
free; (ii) wait if site iþ 1 is occupied. The positions of the

particles are updated at every Monte Carlo time step in
sequential order, starting from the rightmost site. This
update rule is dictated by the experimental process that
led to this work, as argued below. By iterating these two
rules we compute the current J of particles, i.e., how many
particles per unit time hop from one site to the next, for
lattices of arbitrary length and involving slow sites con-
figurations. Figure 1(a) shows J versus the initiation rate �
for four different configurations of slow sites: equally
spaced, randomly distributed, four clusters, and one-
cluster. The value of J for a certain value of � depends
strongly on the configuration of slow sites; sequences of
the same length and the same number of fast and slow sites,
reach a different value of J depending on the position of the
slow sites. The difference in J for large values of �
between the configuration in which the slow sites are
equally spaced and the one in which all slow sites are
forming one single cluster is about threefold. Hence, the
optimal configuration [4] for the current is achieved when
the distance between slow sites is maximized.
Importantly, also the rate of change of J with respect to

� depends on the configuration of slow sites. We obtain
two qualitatively different types of behavior: for the ran-
domly distributed slow sites and for the one-cluster con-
figuration, there is a discontinuity in the derivative of J
with respect to � (type-I), whereas the other two configu-
rations (equally spaced slow sites and four-cluster configu-
ration) show an overall smooth dependence of J versus �
(type-II) [Fig. 1(a)]. The cause for the different types of
transitions lies in the position of the slow sites with respect
to the beginning of the lattice. In the sequence with slow
sites positioned at regular distances, and in the sequence
with four clusters of slow sites, the first slow site is at
position i ¼ 1. By contrast, for both the random and the
one-cluster configuration, the first slow site is at position
i > 1. If the slow sites that are rate limiting are at the
beginning of the lattice, it is not possible to form a queue
of particles. Conversely, if the rate limiting slow sites are at
position i > 1, as soon as the initiation rate increases
beyond a critical value, a queue can form. This leads to

PRL 102, 198104 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
15 MAY 2009

0031-9007=09=102(19)=198104(4) 198104-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.198104


an abrupt increase of the mean density, which is reflected
by a discontinuity of the rate of change of the current with
respect to �.

The queueing theory developed in this work is motivated
by the biological process of translation, in which a protein
is synthesized using a messenger RNA (mRNA) molecule
as a template. Our theory allows us to classify the natural
process of protein production into two large and funda-
mental classes depending on whether the translation under-
goes the phase transition. In the queueing theory, the lattice
corresponds to the mRNA, and each site i represents one
codon specifying one amino acid. The particles that hop
from one site to the next are ribosomes, molecular ma-
chines that carry out the translation. The initiation rate �
gives the probability with which new ribosomes start the
translation. Every site i has a different probability value pi

associated with it, determined by the concentration of the
corresponding transfer RNA (tRNA) molecule in the cyto-
plasm; these are the molecules that bring the amino acids to
the ribosomes, so that the sequence of codons—the
mRNA—can be translated into a sequence of amino
acids—the protein. A codon is commonly referred to as
‘‘rare’’ if it is translated by a low abundance tRNA. Hence,
a rare codon represents a slow site on the lattice. The
current of ribosomes on one specific mRNA yields the
translation rate or the number of proteins per unit time
being produced. Each elongation step consists of two main
events: (i) finding the correct tRNA molecule, and
(ii) formation of the peptide bond (transpeptidase reaction)

and downstream movement of the ribosome by one codon
(translocation reaction). Once the ribosome has recruited
the correct tRNA, it remains charged. Crucially, the time
needed for event (i) is much larger than the time needed for
event (ii) [6]. Both transpeptidase and translocation re-
actions are almost instantaneous, in fact too fast to be
measured [6]. Hence, once the ribosome finds the correct
tRNA, the time that the ribosome needs to move to the next
codon is negligible. Therefore, if two ribosomes occupying
two adjacent codons find their respective tRNAs within the
same Monte Carlo time step, both of them will move
forward. This is precisely implemented by the ordered
sequential update rule used in this work [7,8].
Our theory predicts two main types of mRNAs purely

based on the dynamics of the ribosomes: type-I mRNAs,
that can undergo a first-order phase transition, and type-II
mRNAs, in which the phase transition does not occur. To
test the prediction of this theory, we use experimental data
for the distribution and configuration of the ‘‘hopping’’
probabilities pi of ribosomes from 500 yeast mRNA se-
quences [9]. In Fig. 1(b) we show J depending on � for
four real mRNAs [10]. We can clearly classify them into
type-I and type-II sequences. Figures 2(a) and 2(b) show
the density profiles (mean occupancy time at each codon)
for two representative yeast mRNAs of type-I and type-II,
respectively, for a value of � close to one, so that both
mRNAs carry the maximal number of ribosomes that they
can hold. The ribosomal ‘‘traffic jam’’ in the type-I se-
quence is very pronounced and it is caused by the cluster of
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FIG. 2. Density profiles �i or mean occupancy times at each codon for two real yeast proteins: (a) type-I (YAR042W), and (b) type-II
(YBR210W).
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FIG. 1. Current of particles relative to the initiation rate �: (a) four different configurations of a lattice containing 1% of rare codons,
and (b) four real mRNAs of baker’s yeast.
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rare codons (with the lowest possible value of pi) situated
at i ¼ 485; . . . ; 493. This queue in front of the cluster of
rare codons is a consequence of the first-order phase tran-
sition. Conversely, the density profile for the type-II se-
quence is more homogeneous in the sense that it does not
present any appreciable traffic jam, indicating that J de-
pends smoothly on �.

The key result regarding the translation process is that
our classification purely according to the phase transition
matches the biological function of the proteins encoded by
type-I and type-II mRNAs. All ribosomal proteins (pro-
teins that form part of ribosomes) are classified exclusively
as type-II mRNAs (no phase transition), whereas all type-I
mRNAs (first-order phase transition) translate into non-
ribosomal ones. A rapidly dividing cell contains propor-
tionately more ribosomes than a slow-growing cell. Hence,
during periods of rapid growth, the rate of ribosome syn-
thesis is high. Therefore, it will be advantageous for ribo-
somal protein synthesis to be able to respond to increased
numbers of free ribosomes (representing higher values of
�). This implies a smooth dependence of the translation
rate with �, i.e., a type-II response. By contrast, nonribo-
somal proteins whose mRNAs exhibit a type-I response
will be translated at a constant rate once � increases past a
critical value. This will lead to a noncontinuous change of
the current of ribosomes with respect to �, i.e., a first-order
phase transition. The positioning of rare codons is thus able
to insulate type-I sequences from variations in the value of
�, possibly a cellular mechanism to reduce noise in gene
expression. This constitutes a strong validation of our
theoretical results, showing that the specific configuration
of slow codons in mRNAs constitutes a regulatory mecha-
nism by which the translation machinery responds differ-
ently to a high value of � in different types of proteins.

To show analytically the origin of the first-order phase
transition of the current with respect to the initiation rate,
we introduce a generalized totally asymmetric exclusion
process with a sequential update rule defined by the fol-
lowing exact equations

ui ¼ piPi;iþ1ð�;�Þ þ piPi;iþ1ð�;�Þuiþ1ji; (1)

where ui denotes the effective probability that the particle
at site i moves to site iþ 1, Pi;iþ1ð�;�Þ is the conditional
probability that site iþ 1 is free given that site i is occu-
pied, Pi;iþ1ð�;�Þ is the conditional probability that site iþ
1 is occupied given that site i is also occupied, and uiþ1ji is
the effective conditional probability that the particle at site
iþ 1 advances one step if site i is occupied. The first term
accounts for the situation in which the next site is free and
the particle hops; the second term accounts for the situation
in which the next particle is occupied, but the particle
occupying it also moves, so that the particle on site i can
also advance. A comparison of the solution obtained from
Eq. (1) with the one obtained with the numerical imple-
mentation of rules (i) and (ii) shows that they agree.

By applying the mean field approximation, i.e., neglect-
ing correlations between neighboring sites, the analysis of

Eq. (1) becomes much more tractable. Equation (1) is then
approximated as follows

ui ¼ pið1� �iþ1Þ þ pi�iþ1uiþ1; i ¼ 1; . . . ; N; (2)

where �i is the probability that the site i is occupied. Even
though there are some deviations with respect to the nu-
merical implementation of the rules (i) and (ii), the quali-
tative behavior is reproduced correctly. Once the steady
state has been reached, the current is conserved along the
sequence, i.e., ui�i ¼ uiþ1�iþ1 ¼ J, 8 i, since premature
termination events are not included in the process [11]. A
particle on the last site is not hindered by any other particle
and hence, uN ¼ pN . Also note that the initiation rate � is
equivalent to having a reservoir of particles ready to hop,
i.e., p0 ¼ � and �0 ¼ 1, so that u0 ¼ J. Fixing a value for
the current J and iterating Eq. (2) backwards by starting
from site N, we calculate at each step the values of ui and
�i until we reach the first site. We then calculate the
initiation rate � which corresponds to the fixed value of
J by using J ¼ u0 ¼ �ð1� �1Þ þ ��1u1. This leads to a
polynomial of Nth order in J with coefficients that depend
on p1; . . . ; pN and �. We consider three main cases for the
configuration of slow sites on the lattice, in which we
obtain the polynomial in J by finding closed forms for
the recurrence relations [Eq. (2)] using homographic
functions.
Case A: We assume that there are M slow sites with

hopping probabilities fq1; . . . ; qMg, where q1 is at position
i > 1. We further assume that the sites of the lattice be-
tween the slow ones are fast; i.e., the first site is also fast.
The distances Ni between two slow sites qi�1 and qi are
assumed to be large enough, so that we can neglect terms of
the order ofNi or higher in the polynomial of J. For the fast
sites, we choose for simplicity hopping probability p ¼ 1.
In this case, we obtain a polynomial in J with the following
roots: �; q1; q2; . . . ; qM. Combining these solutions with
the fact that the current J is limited by the slowest site of
the lattice [12], we obtain the following solution for the
current: J ¼ �, if �< �c, and J ¼ qmin, otherwise, where
qmin ¼ minfq1; . . . ; qMg. Hence, the derivative of J with
respect to � has a discontinuity at the critical value �c ¼
qmin, indicating a first-order phase transition [Fig. 3(a)].
This transition is accompanied by a sudden increase of the
mean density of particles on the lattice, and a sudden
decrease in the mean speed of the particles. If imin indicates
the position of the slowest site of the lattice, then for �>
�c the region i ¼ 1; . . . ; imin is completely occupied,
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FIG. 3. Phase transition diagrams: (a) case A, (b) case B,
(c) case C with qmin ¼ q2. In figures (b) and (c), q1 ¼ 0:4.
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whereas the region i ¼ imin þ 1; . . . ; N has a low density
[Fig. 2(a)].

Case B: We consider the same configuration as before,
but now the first site of the lattice is slow; i.e., q1 is at
position i ¼ 1. In this situation we obtain two different
subcases. (i) If q1 ¼ qmin, then J ¼ �q1

�þq1��q1
, for 0 � � �

1. In this case the dependence of J on� is smooth and there
is no phase transition in the current of particles. (ii) If by
contrast, q1 > qmin, then J ¼ �q1

�þq1��q1
, if �< �c, and

J ¼ qmin, otherwise, where �c ¼ ðq1qminÞ=ðq1 � qmin þ
q1qminÞ. In this case, we have a first-order phase transition,
because the rate limiting step is not the first site of the
lattice [Fig. 3(b)].

Case C: A more complicated situation arises when the
slow sites are not isolated but appear in clusters. Assume
that we have a cluster of size S at the beginning of the
sequence, i.e., i ¼ 1; . . . ; S, where the sites have hopping
probability q1. At a large distance from that cluster, we
have an isolated slow site with hopping probability q2.
Even in the case where q2 < q1, the slow cluster at the
beginning might constitute the rate limiting step for the
particles. Applying the procedure outlined above, we ob-
tain the following polynomial:

�Sðuþu��q2 � u��q2Þ þ uþð1� u�Þ�q2
þ ½�Sð�q2 þ uþu��ðq2 � 1Þ þ u�q2 � �uþq2 þ u��

� uþu�q2 � u��q2Þþ uþu�ðq2 þ �� �q2Þ
þ uþð�q2 � q2 � �Þ þ �q2ðu� � 1Þ�J
þ ½�Sðuþu�ð1� �Þ þ �uþ þ u�ð�� 1Þ � �Þ

þ uþu�ð�� 1Þ þ uþð1� �Þ � u��þ ��J2 ¼ 0;

where u� ¼ 1
2 ½q1 þ q1J �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q1ðq1 þ 2q1J þ q1J
2 � 4JÞp �

are the fixed points of the map ui ¼ q1ð1� J=uiþ1 þ JÞ
and � ¼ �2u��q1JþJðuþ�u�ÞþJð4�q1Þ

2uþþq1JþJðuþ�u�Þ�Jð4�q1Þ . To exemplify the ef-

fect of the cluster of slow sites at the beginning of the
lattice, we discuss the solutions for S ¼ 2: (i) if q2 <
q1=ð2� q1Þ, then

J ¼
(

1
2

�2�q1þ2�þq1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4�2q1þ4�2þq21

p
�q1���q1þ1 if �< �c;

q2; otherwise;

where �c ¼ ½q2ðq1 þ q2q1 � q2Þ�=ðq22q1 þ 2q2q1 þ q1�
q22 � 2q2Þ. This means that for �> �c, the single slow site
determines the current of the particles in spite of the
presence of the cluster. In this case, we have again a
discontinuity in @J=@�, indicating a first-order phase tran-
sition [Fig. 3(c)]. (ii) By contrast, if q2 > q1=ð2� q1Þ, then
we obtain J ¼ 1

2

�2�q1þ2�þq1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4�2q1þ4�2þq2
1

p
�q1���q1þ1 for 0<�<

1. Therefore, in the latter case, even though q2 < q1, the
cluster determines the current of the particles and J de-
pends smoothly on �.

In conclusion, we have shown that, depending on the
specific configuration of slow sites in the queueing process,
the current of particles can undergo a first-order phase

transition. We have derived analytical expressions for the
conditions that the configuration must obey in order to do
so, and have validated our theoretical results with experi-
mental data of the concentration of tRNA molecules in
S. cerevisiae. Our theory predicts the classification of
mRNA sequences into two fundamental types purely based
on the dynamics of the ribosome traffic, and this classifi-
cation matches perfectly the biological function of each
type, providing thus the link between the first-order phase
transition and the biology. This first-order phase transition
is manifestly the key factor distinguishing the way in
which the translation of the different types of mRNA
responds to ribosome availability. Our results are not
only relevant for nonequilibrium statistical physics, but
also find applications in synthetic biology since, by rear-
ranging synonymous codons, the translatability of a given
mRNA under different conditions of free ribosome avail-
ability can be controlled.
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