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We introduce a particle-based Monte Carlo formalism for the study of polymeric melts, where the

interaction energy is given by a local density functional, as is done in traditional field-theoretic models.

The method enables Monte Carlo simulations in arbitrary ensembles and direct calculation of free

energies. We present results for the phase diagram and the critical point of a binary homopolymer blend.

For a symmetric diblock copolymer, we compute the distribution of local stress in lamellae and locate the

order-disorder transition.
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The self-assembly of block copolymers into ordered
morphologies [1] continues to pose formidable challenges:
questions of fundamental interest, such as the temperature
for the order-disorder transition (ODT), are still under in-
vestigation [2]; meanwhile, a new host of issues has been
raised by the rapidly increasing number of applications
using block copolymer thin films to create nanoscale de-
vices, including high-density magnetic storage media [3].

Given the length scale of the ordered morphologies (5 to
500 nm), a fully atomistic description is beyond the reach
of currently available computational resources. Coarse-
grained descriptions are necessary, and it is desirable to
identify approaches that are amenable to analytical treat-
ments in limiting cases. Existing mesoscopic models can
be classified into two categories: particle-based or field-
based. In the latter, the fundamental degrees of freedom are
the continuous fields of the local densities, and the inter-
action free energy is written as a functional of those fields.
Prominent among them is the ‘‘standard model’’ of block
copolymers [4,5], which is one of the cornerstones of
polymer physics and has served as the starting point for
subsequent analytical and numerical treatments. With the
exception of recent field-theoretic methods [6], field-based
approaches, including the self-consistent field theory
(SCFT) [7], invoke a mean-field assumption and neglect
fluctuation effects. In contrast, particle-based approaches
do not introduce fields but work directly at the level of the
particles or molecules that constitute the system, which
facilitate description of complex molecular architectures
[8,9]. Field-based and particle-based approaches have gen-
erally been pursued in the context of drastically different
models; mapping the results of one model onto another is
not straightforward [10], and has often hindered direct
comparisons between results of distinct approaches.

Recent efforts have sought to introduce particle-based
simulations of the same coarse-grained models or
Hamiltonians that are used in theoretical treatments, in-
cluding SCFT. Zuckermann and co-workers, for example,
employed a coarse-grained Hamiltonian to study polymer
brushes [11] and, more recently, similar approaches have

been applied to investigate polymer blends and copolymer
nanocomposites [12–14]. Similar to numerical field-
theoretic schemes, particle-based implementations of
coarse-grained models have often resorted to discretization
procedures, in which space is subdivided into discrete
‘‘cells.’’ Unfortunately, their use is restricted to constant-
volume applications. Approaches that allow for fluctuating
domain shape and size would be particularly useful be-
cause they would enable direct calculation of stresses,
phase boundaries, and free energies.
In this work we introduce a new particle-based

Monte Carlo (MC) formalism in which the interaction
between chains is taken into account with a functional of
the densities, as is done in traditional field-theoretic ap-
proaches [5,7]. However, the discretization of space is
circumvented by introducing off-grid, continuous interac-
tions. We show how, by doing so, MC simulations can be
carried out in a variety of ensembles and used to compute
directly thermodynamic and structural properties, includ-
ing free energies, phase diagrams, and local stresses.
Specifically, we determine the coexistence curves for a
binary blend of homopolymers in the presence of fluctua-
tions and provide a precise estimate of the critical solution
temperature by direct mapping onto the critical point order
parameter distribution of the 3D Ising model. For a
lamellae-forming block copolymer, we compute the local
stresses and locate the ODT.
We consider n chains of an AB diblock copolymer, in a

volume V at temperature T. Each chain is represented by a
collection of N beads, connected by harmonic springs. The
position of the sth bead in the ith chain is denoted by riðsÞ.
Consistent with the standard model, the bonded energy is
given by �H b ¼ 3

2

P
n
i¼1

P
N�1
s¼1 ½riðsþ 1Þ � riðsÞ�2=b2,

where ��1 ¼ kBT, kB is Boltzmann’s constant, and b2 is
the mean squared bond length for an ideal chain. The
nonbonded free energy is given by

�H nbffiffiffiffiffiffiffi
N

p ¼
Z

V

dr

R3
eo

�
�oN�A�Bþ�oN

2
ð�Aþ�BÞ2

�
; (1)

where R2
eo ¼ ðN � 1Þb2 is the mean squared end-to-end
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distance of an ideal chain, �AðrÞ denotes the local, dimen-

sionless density of block A, and N ¼ ð�oR
3
eo=NÞ2, where

�o is the bead number density. The first term of the func-
tional describes the incompatibility between unlike beads
while the second, akin to the Helfand quadratic approxi-
mation [5], gives the melt a finite compressibility. The
assumption of strict incompressibility, often introduced in
field-theoretic models, need not be made in a particle-
based description.

To calculate the total energy H b þH nb, the local
densities must be inferred from the beads’ positions. As
alluded to earlier, resorting to a grid [12,14], as was done in
past works, introduces a number of drawbacks. The inter-
action between beads depends on the grid position and one
cannot easily implement calculations at constant stress.
Here we associate a density cloud wðrÞ to each bead
[11,15], thereby allowing us to define a continuous density
field of the form�AðrÞ ¼ P

i�AKi
wðr� riÞ, where the sum

is taken over all beads i, � is the Kronecker delta and Ki is
A or B, the type of bead i. Considering for simplicity a
single term H ¼ R

V dr�AðrÞ�BðrÞ of the functional, one

can then write

H ¼ X

i;j

�AKi
�BKj

Z

V
drwðr� riÞwðr� rjÞ; (2)

where the integral on the right-hand side is now denoted by
IðrijÞ with rij ¼ rj � ri. The nonbonded contribution de-

fined in Eq. (1) is thus rewritten as H nb ¼ P
j>iUij;nb, the

potential energy of a system of interacting particles, with
the interbead potential given by [13]

�Uij;nb ¼
ffiffiffiffiffiffiffi
N

p

R3
eo

½�oNð1� �KiKj
Þ þ �oN�IðrijÞ: (3)

Note that the procedure outlined above is applicable when-
everH nb is a polynomial functional of the local densities,
with terms of order p yielding p-body potentials.

It is apparent from Eq. (1) that the behavior of the
copolymer model is governed by four physical invari-
ants—the mean squared end-to-end distance, the Flory-
Huggins parameter, the melt compressibility and the in-
variant degree of polymerization—related to the bare pa-

rameters of the model, R2
eo, �oN, �oN, and N ,

respectively. The values of �oN and N adopt typical
experimental values. Here, we do not attempt to match
�oN to its experimental counterpart, the isothermal com-
pressibility. The contour discretization N and the cloud
function wðrÞ are discretization parameters whose influ-
ence on the results can be made minimal through judicious
choices, as discussed below.

From interbead forces fij ¼ �rUij, the local stress

tensor �ðrÞ can be determined from ��abðrÞ ¼ P
i�ðr�

riÞ�ab þ ��0
abðrÞ, with

��0
abðrÞ ¼

X

i;j>i

rij;afij;b
Z 1

0
ds�ðr� ri � srijÞ; (4)

where a, b 2 fx; y; zg [16]. The global stress is given by
�ab ¼ R

V dr�abðrÞ=V and the pressure is P ¼ Trð�Þ=3.
While using boxes of variable size or shape is problem-

atic in simulations of grid-based models, and isobaric
calculations are unusual in traditional field-theoretic ap-
proaches (see Ref. [17] for notable exceptions), working in
the nPT ensemble is particularly convenient because the
size of the simulation box can adjust spontaneously to the
natural periodicity of the relevant block copolymer mor-
phology, thereby minimizing finite-size effects. Moreover,
the combination of an isobaric simulation ensemble and
the ability to accurately calculate the chemical potential
(due to the absence of harsh, short-ranged interactions)
allow for efficient computation of the relevant thermody-
namic potential.
The model and methods outlined above are examined in

the context of two systems: a homopolymer blend and a
symmetric block copolymer. Unless otherwise noted,

N ¼ 1282, which represents a value typical of experimen-
tal systems, �oN ¼ 50, and N ¼ 32. For computational
simplicity, the density cloud is a square function wðrÞ ¼
CwðxÞwðyÞwðzÞ, where wðuÞ ¼ 1 if juj< �L=2 and 0
otherwise; other forms could be used [11]. The normal-
ization constant C is fixed by the condition that the av-
erage density be unity when chains are ideal, i.e.

N
ffiffiffiffiffiffiffi
N

p R
dr
R3
eo
wðrÞ ¼ 1. Note that C and N are constant

throughout the simulation and independent of the ensemble
considered. In the following, the interaction range �L is
chosen so that a given bead interacts on average with
�oð2�LÞ3 � 14 other beads.
As a first illustration of the proposed MC approach, we

have computed the coexistence curve for a binary blend of
homopolymers in an isobaric semi-grand-canonical en-
semble and in the nPT Gibbs ensemble [18]. Figure 1

shows the binodal curves obtained with N ¼ 862, 1282,
1852, and 2652. The other parameters (�o ¼ 1:5625 and
N ¼ 16, 32, 64, 128, respectively) are such that the bead
interaction potentials are the same in all cases.
The Flory-Huggins parameter, �N, is related but not

identical to the bare model parameter, �oN, because of
fluctuation effects [2,10,12,19], e.g., fluidlike packing of
the soft beads. The �N parameter can be identified by
comparing the results of the simulation with the predic-
tions of the Flory-Huggins mean-field theory, for �N � 2,
i.e., far away from the critical point of the blend, where
composition fluctuations are negligible and the mean-field
approximation is accurate. We assume that �N=�oN ¼ �
and estimate the constant � from the two-body distribution
functions [10] or from the semigrand canonical equation of
state, namely ��	 ¼ ln½�A=ð1��AÞ� � �Nð2�A � 1Þ,
where �	 is the exchange chemical potential for a chain
[10,20]. Both methods yield the ratio � ¼ 0:82 and we use
�N � 0:82�oN as the ordinate in Fig. 1.
The location �cN of the critical solution point has been

estimated by the condition that the normalized probability
distribution of the composition obtained from the MC
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simulation matches the universal 3D Ising curve [21]. As
expected, the critical point shifts towards lower �N upon

increasing N and reaches �cN ¼ 2 in the limit N ! 1.
We now turn our attention to the lamellar morphology of

a symmetric diblock copolymer. Figure 2 shows density
profiles at �oN ¼ 35 from MC simulations and SCFT in
the nVT ensemble. For the comparison of MC results with
the predictions of field-theoretic calculations, we assume
that the ratio �N=�oN � 0:82 is identical to that of the
blend system, i.e., �N ¼ 28:7 [22]. The MC data com-
puted with N ¼ 32 (�L ¼ 0:075Reo) and N ¼ 64 (�L �
0:06Reo) are identical within the scale of the figure. The
lamellar spacing L0, reached when the global stress tensor
is isotropic, is 1.78 and 1.79 Reo for N ¼ 32 and 64,
respectively. Both numbers are slightly greater than the
SCFT result, L0 ¼ 1:75 Reo.

The prediction of local mechanical properties in ordered
morphologies is not trivial, and it is only recently that
SCFT has been extended to determine the distribution of
local stress [17]. A recent study has presented flat tangen-
tial stress profiles and a normal stress with a minimum at
the interface and a maximum in its vicinity [24]. Our
simulations yield the local stress profiles shown in Fig. 2.
The normal stress is flat, as required by mechanical stabil-
ity. The tangential stresses are not constant but exhibit a

minimum at the interface and a maximum in its immediate
vicinity.
To estimate the ODTof the symmetric copolymer, simu-

lations are implemented in the nPT ensemble. The pres-
sure is set to P ¼ 18��1b�3, the value obtained in an nVT

ensemble for �oN ¼ 0 and the default parameters (N ¼
1282, �oN ¼ 50, and N ¼ 32). The excess chemical po-
tential 	ex (or Gibbs free energy) can be determined
directly from the configurations of the system using a
configurational bias Widom insertion method [25].
Figure 3 plots 	ex as a function of �oN. Branches for the
disordered and ordered phases are approximately linear in
the vicinity of the ODT, with distinctly different slopes.
Our results provide strong evidence for the fluctuation-
induced first-order character of the ODT [13,26,27]. For

N ¼ 1282 and N ¼ 32 (case I), the transition takes place
at ð�oNÞODT ¼ 16:8. To assess the effect of discretization,
the curve withN ¼ 64 and all physical invariants being the
same is also shown (case II); it gives ð�oNÞODT ¼ 16:3. On

the other hand, we also computed 	exð�oNÞ for N ¼
1852, which corresponds to a molecular weight twice as
large as that corresponding to case I. The other parameters
(�oN ¼ 100 and N ¼ 64) are such that the bead interac-
tion potentials for case III are the same as in case I. This
system has an ODT at �oN ¼ 16:5.
In order to compare these simulation results to those of

field-theoretic approaches, both the renormalization of the
bare interactions by short-ranged correlations and discre-
tization effects of the chain architecture must be consid-
ered [15]. We account for the former by the ratio
�N=�oN ¼ 0:82, 0.86, 0.82 for cases I–III; i.e., the ODT
occurs at �ODTN ¼ 13:8, 14.0, and 13.5, respectively. The
discretization effects of the chain architecture are ac-
counted for by calculating the partial structure factors
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FIG. 2 (color online). (Left) Density profiles in a lamellar
phase of a symmetric diblock, computed with MC simulations
and SCFT, in the nVT ensemble, for �N ¼ 28:7 (�oN ¼ 35).
The x coordinates are normalized by the lamellar spacing L0.
The system size for the MC simulation is 2L0 � L0 � L0.
(Right) Local stress for the MC simulation with N ¼ 32; each
component is divided by the pressure P ¼ 19:4��1b�3. The
total density � is also shown.
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FIG. 1 (color online). Coexistence curves computed in the
semigrandcanonical ensemble for binary blends of homopoly-
mers with N ¼ 862 (m), 1282 (j) 1852 (.) and 2652 (�). The
Gibbs ensemble curve for N ¼ 862 is also shown (+). The
pressure is P ¼ 18:8, 18.0, 17.6, 17:4��1b�3 for N ¼ 16, 32,
64, 128, respectively. At �oN ¼ 0, these pressures yield a bead
density �o ¼ 23:7b�3. The black line represents the mean-field
prediction for an incompressible blend. The top left graph shows
the probability distribution P of the order parameter c ¼ ð�A �
1=2Þ=hð�A � 1=2Þ2i1=2; the black line is the result for the 3D
Ising universality class, and the other curves are results for the
different blends at our estimate of �cN. The limiting value of

�cN ¼ 2 as 1=
ffiffiffiffiffiffiffi
N

p
! 0 is shown at the top right.
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SAA and SAB of blocks of a single chain in the noninteract-
ing melt with �oN ¼ 0; these structure factors are used to
predict the ODT according to the random phase approxi-
mation, �RPA

ODTN ¼ minq½ N
SAAðqÞ�SABðqÞ� [28]. This yields

�RPA
ODTN ¼ 10:1 and 10.3 for chain discretizations N ¼ 32

and 64. Thus, the ratio between the location of the observed
first-order transition and the mean-field prediction is
�ODTN=�RPA

ODTN ¼ 1:36, 1.36, and 1.31 for cases I-III,

respectively. Our results are slightly larger than those
obtained from a Hartree analysis of fluctuations [29] and
than results of a similar lattice-based model [13], but the
shift away from the mean-field prediction is consistent with
the short-chain models of lattice chains with excluded
volume [27] and field-theoretic simulations [6].

In conclusion, we have proposed a particle-based MC
simulation method for coarse-grained polymer models
where the interaction energy is a functional of the local
density. The method enables direct simulations of phase
behavior in arbitrary ensembles, with fluctuations and in a
variable-shape simulation box, and permits calculation of
local stresses, pressure, elastic moduli, chemical poten-
tials, and free energies. We anticipate that the methods
outlined in this work for simple systems will find wide-
spread use in the study of multiblock copolymers and
nanocomposites, where much less is known about their
morphologies and mechanical properties.

Financial support was provided by the National Science
Foundation through the Nanoscale Science and
Engineering Center at the University of Wisconsin.
Support from the Semiconductor Research Corporation
and the Volkswagen Foundation is also gratefully acknowl-
edged. We thank K. Daoulas for helpful discussions.

*Author to whom correspondence should be addressed.
[1] I.W. Hamley, The Physics of Block Copolymers (Oxford

University Press, Oxford, 1998).
[2] D. C. Morse, Ann. Phys. (Leipzig) 321, 2318 (2006).
[3] R. Ruiz, H. Kang, F. A. Detcheverry, E. Dobisz, D. S.

Kercher, T. R. Albrecht, J. J. de Pablo, and P. F. Nealey,
Science 321, 936 (2008).

[4] M.W. Matsen, J. Phys. Condens. Matter 14, R21
(2002).

[5] E. Helfand, J. Chem. Phys. 62, 999 (1975).
[6] A. Alexander-Katz and G.H. Fredrickson,

Macromolecules 40, 4075 (2007); E.M. Lennon, K.
Katsov, and G.H. Fredrickson, Phys. Rev. Lett. 101,
138302 (2008).

[7] G. H. Fredrickson, The Equilibrium Theory of Inhomo-
geneous Polymers (Clarendon Press, Oxford, 2006).

[8] R. D. Groot, Lect. Notes Phys. 640, 5 (2004).
[9] I. Pagonabarraga and D. Frenkel, J. Chem. Phys. 115,

5015 (2001).
[10] M. Müller, Macromol. Theory Simul. 8, 343 (1999).
[11] M. Laradji, H. Guo, and M. J. Zuckermann, Phys. Rev. E

49, 3199 (1994).
[12] K. C. Daoulas and M. Müller, J. Chem. Phys. 125, 184904

(2006).
[13] M. Müller and K. C. Daoulas, J. Chem. Phys. 128, 024903

(2008).
[14] F. A. Detcheverry, H. Kang, K. C. Daoulas, M. Müller, P. F.

Nealey, and J. J. de Pablo, Macromolecules 41, 4989
(2008).

[15] Q. Wang, J. Chem. Phys. 129, 054904 (2008).
[16] F. Varnik, J. Baschnagel, and K. Binder, J. Chem. Phys.

113, 4444 (2000).
[17] C. A. Tyler and D. C. Morse, Macromolecules 36, 8184

(2003); J. L. Barrat, G.H. Fredrickson, and S.W. Sides,
J. Phys. Chem. B 109, 6694 (2005).

[18] D. Frenkel and B. Smit, Understanding Molecular
Simulation (Academic Press, Orlando, 2001).

[19] Z.-G. Wang, J. Chem. Phys. 117, 481 (2002).
[20] M. Müller and K. Binder, Macromolecules 28, 1825

(1995).
[21] M. Müller and N. B. Wilding, Phys. Rev. E 51, 2079

(1995).
[22] Whether a single �-parameter can simultaneously de-

scribe the thermodynamics of homopolymer blends and
block copolymers is an open question [23].

[23] W.W. Maurer, F. S. Bates, T. P. Lodge, K. Almdal, K.
Mortensen, and G.H. Fredrickson, J. Chem. Phys. 108,
2989 (1998).

[24] P. Maniadis, T. Lookman, E.M. Kober, and K.O.
Rasmussen, Phys. Rev. Lett. 99, 048302 (2007).

[25] J. J. de Pablo, M. Laso, and U.W. Suter, J. Chem. Phys. 96,
6157 (1992).

[26] H. X. Guo and K. Kremer, J. Chem. Phys. 118, 7714
(2003).

[27] O. N. Vassiliev and M.W. Matsen, J. Chem. Phys. 118,
7700 (2003).

[28] L. Leibler, Macromolecules 13, 1602 (1980).
[29] �FH

ODTN=�RPA
ODTN ¼ 1þ 3:9 �N �1=3, see G.H. Fredrickson

and E. Helfand, J. Chem. Phys. 87, 697 (1987).

10 12 14 16 18 20

χοN

0

0.5

1

1.5

2

µex
 -

 µ
ex

(χ
οN

 =
 1

0)
 [

β-1
]

I N= 128
2
    (N=32)

II N= 128
2
    (N=64)

III N= 185
2
    (N=64)

FIG. 3 (color online). Excess chemical potential as a function
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