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We report on precise low-temperature specific-heat measurements, CðTÞ, of YbRh2Si2 in the vicinity of
the antiferromagnetic phase transition on a single crystal of superior quality (residual resistivity ratio of

�150). We observe a very sharp peak at TN ¼ 72 mK with absolute values as high as C=T ¼ 8 J=molK2.

A detailed analysis of the critical exponent � around TN reveals � ¼ 0:38 which differs significantly from

those of the conventional universality classes in the Ginzburg-Landau theory, where � � 0:11. Thermal-

expansion measurements corroborate this large positive critical exponent. These results provide insight

into the nature of the critical magnetic fluctuations at a temperature-driven phase transition close to a

quantum critical point.
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Thermodynamically driven phase transitions (PTs) oc-
cur in manifold variants in solid-state physics. The Landau
theory of PTs was a major achievement in describing PTs
with one parameter, the order parameter [1]. Universal
scaling dependences are valid for all continuous, i.e.,
second-order PTs and are only determined by the dimen-
sionality of the system and the critical fluctuations [2]. In
contrast, quantum PTs are driven by quantum fluctuations
associated with Heisenberg’s uncertainty principle [3–5].
At a quantum critical point (QCP), the ordering tempera-
ture of a continuous classical PT is suppressed to zero
temperature by a nonthermal control parameter (e.g., pres-
sure or magnetic field), and the classical PT changes into a
quantum one. Characteristics for a continuous quantum PT
are strong deviations from Landau-Fermi-liquid theory in
the physical properties of metallic systems in a broad range
of the phase diagram around the QCP. In heavy-fermion
metals, these non-Fermi-liquid phenomena have been
studied with great care, but a complete theoretical concept
replacing the Fermi-liquid paradigm is still lacking (for
recent reviews, see Refs. [5,6]). In this Letter, we address
the outstanding question of whether a continuous magnetic
PT driven by temperature in the vicinity of a QCP can be
described within the framework of universality classes in
the theory of PTs. To this end, detailed measurements of
specific heat and thermal expansion of YbRh2Si2 around
the antiferromagnetic (AFM) PT at TN ¼ 72 mK were
performed.

The heavy-fermion system YbRh2Si2 is well suited to
study this interplay between quantum and classical PTs,
because it is a clean, stoichiometric, and well-
characterized metal situated on the magnetic side (TN ¼
72 mK), but extremely close to an AFM QCP, leading to
pronounced non-Fermi-liquid behavior in transport and
thermodynamic properties, such as the divergence of the
electronic Sommerfeld coefficient � ¼ C4f=T, and a
linear-in-T resistivity [7]. The observed temperature de-

pendences disagree with the expectation for the three-
dimensional (3D) spin-density-wave scenario that is appli-
cable to many heavy-fermion materials at a QCP.
Therefore, a new theoretical concept was developed, in-
voking critical excitations that are inherently quantum
[8,9], explaining !=T scaling in CeCu5:9Au0:1 as well as
diverging Grüneisen ratios [10,11] and a jump of the Fermi
volume observed in Hall-effect measurements [12] in
YbRh2Si2. In this framework of ‘‘local’’ quantum critical-
ity, the Kondo effect is critically destroyed because local
moments are coupled not only to the conduction electrons
but also to the fluctuations of the other local moments [5].
The recent observation of an additional energy scale van-
ishing at the QCP which corresponds neither to the Néel
temperature nor to the upper boundary of the Fermi-liquid
region has boosted the interest in YbRh2Si2 [13].
High-quality single crystals of YbRh2Si2 were grown

from indium flux. The growing parameters were improved
to gain larger single crystals with higher crystallinity. This
new generation of single crystals exhibits residual resistiv-
ities as low as �0 � 0:5 ��cm, corresponding to a resid-
ual resistivity ratio of �150 [14]. The specific heat
between 0.04 and 1 K was measured in a 3He=4He dilution
refrigerator, utilizing a semiadiabatic heat-pulse method
with background heating [15,16] on a plateletlike single
crystal (m� 10 mg) mounted on a silver platform. The
addenda of the latter was measured separately and did not
exceed 5% of the total measured specific heat at tempera-
tures below 1 K. The determination of the critical exponent
necessitates a very stable and accurate temperature of the
environment. We achieved a temperature noise level below
30 �K and a resolution of the temperature measurement
better than �5 �K. For temperatures above 0.5 K, the
specific heat was measured in a commercial PPMS with
a 3He insert. The 4f contribution to the specific heat, C4f,
was obtained by subtracting the nonmagnetic, CLu, and the
nuclear, CQ, contribution from the measured specific heat,
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Cmeas, as C4f ¼ Cmeas � CLu � CQ. CLu was determined

by measuring the specific heat of the nonmagnetic refer-
ence sample LuRh2Si2 below 10 K [17]. However, CLu at
1 K contributes only to 1% of Cmeas and the nuclear
quadrupolar contribution, CQ ¼ �Q=T

2, calculated for

Yb with �Q ¼ 5:68� 10�6 J K=mol as determined from

Mössbauer results [18,19], is well below 1% of Cmeas

around TN .
In Fig. 1(a), the 4f increment to the specific heat is

plotted as C4f=T on a logarithmic temperature scale above
TN . Below T � 10 K, C4f=T logarithmically increases
with C4f=T ¼ a lnðT0=TÞ with a ¼ 0:15 J=molK2 and
T0 ¼ 30 K, in agreement with results on samples of lower
quality [7,20]. Below T � 0:3 K, C4f=T increases stronger
than logarithmically with a power law of C4f=T / T�0:34.
This additional upturn was discussed in detail in Ref. [19]
and ascribed to a ‘‘breakup’’ of the heavy quasiparticles at
the QCP. We note that this unique upturn is also visible in
our new higher-quality sample, in contrast to measure-
ments reported by Knebel et al. [21].

Next, we focus on the specific heat at the magnetic PT.
In Fig. 1(b), C4f=T is shown on a linear temperature scale.
To determine the shape of the peak very accurately, we
have reduced the power of the heat pulse to the lowest
value at which an accurate determination of the heat ca-
pacity is still possible. In a standard experiment the power
of the heat pulse is chosen such that the achieved tempera-
ture increase, �T, amounts to �T=T � 2%. The latter
value was found out to be a good compromise of large
signal-to-noise ratio and reasonable resolution [16]. The
measurement with �T=T ¼ 2% yields the black curve in
Fig. 1(b). A pronounced peak is observed at TN . However,
sharp features in the specific heat are artificially broadened

when using such a relatively large �T=T. The measure-
ments on the high-quality single crystal reveal a drastic
sharpening of the peak when decreasing the power of the
heat pulse such that �T=T ¼ 0:1%: The maximum value
at TN reaches C4f=T � 8 J=molK2. In Fig. 1(c), this peak
height is shown as function of�T=T. The absolute value of
C4f=T at TN increases strongly for �T=T < 2% but only
slightly for �T=T < 0:5%, in contrast to what one would
expect for a first-order PT. The scattering of the data below
and above TN is larger compared with the standard curve
owing to the small temperature increase, �T � 0:1 mK.
Well below TN , the Sommerfeld coefficient becomes

constant, �0 ¼ 1:7 J=molK2, in agreement with previous
studies [20]. However, the fact that C4f=T is larger below
the magnetic PT than above is surprising and not yet
understood. We note that the peak at TN is remarkably
sharp while, usually in heavy-fermion systems, anomalies
in the specific heat associated with the onset of magnetic
order are broad [22,23]. To the best of our knowledge there
is no deep investigation of the critical exponent in specific-
heat measurements on magnetically ordered heavy-
fermion systems.
In order to classify the magnetic PT, a detailed analysis

of the critical behavior was done. We applied the usual fit
function [2],

C�ðtÞ ¼ A�

�
jtj�� þ bþ Et; (1)

to describe the critical behavior with the reduced tempera-
ture t ¼ ðT � TNÞ=TN; þð�Þ refers to t > 0 (t < 0), re-
spectively. The background contribution is approximated
by a linear t dependence (bþ Et) close to TN , while the
power law [first term in Eq. (1)] represents the leading
contribution to the singularity in C4fðtÞ [24,25]. Often, a
higher-order correction term is introduced in the fitting
function; however, as the leading contribution in the case
of YbRh2Si2 is very large, the data can be described well
with Eq. (1) [2]. The procedure is as follows: The parame-
ters �, A�, b, and E are fitted with fixed TN ¼ 72 mK,
simultaneously for t > 0 and t < 0. Then the fit is im-
proved with an extended temperature range of typically
0:003 � jtj � 0:1. This routine is repeated for slightly
different TN until the best fit (smallest deviation of the
root-mean-square error) is obtained which, in addition,
gives a very accurate value of TN . We performed this fitting
procedure for three experimental data sets (1, 2, 3) ob-
tained with different �T=T (0.5%, 0.3%, 0.1%), the results
of which are shown in Table I. For fit No. 1a we used the
same experimental data set as for No. 1 but before fitting
we subtracted the specific heat obtained at the critical field
(TN ! 0), in order to account for the quantum fluctuations.
The critical field within the easy plane amounts to Bc ¼
0:06 T and C4f=T grows as T�0:34 below 0.3 K at Bc [26].
From Table I, it is obvious that the different experimental
data sets lead to almost the same critical exponent, � ¼
0:38� 0:03. Moreover, � is not sensitive to the back-

FIG. 1 (color online). (a) 4f increment to the specific heat
plotted as C4f=TðTÞ on a logarithmic T scale for temperatures
above TN . Gray (red) line indicates a fit C=T / lnðT0=TÞ with
T0 ¼ 30 K between 0.3 and 10 K. (b) C4f=TðTÞ on a linear
T scale. The large peak at TN ¼ 72 mK shows the onset of AFM
order. The peak sharpens dramatically upon reducing the power
of the heat pulse during the measurement, leading from �T=T ¼
2% (circles) to 0.1% (squares). (c) Absolute values of C4f=T at
TN as a function of �T=T.
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ground subtraction which is completely different for fits 1
and 1a.

The excellent quality of these fits becomes evident in
Fig. 2, where the curve for fit 1 is shown below (solid line)
and above (dashed line) TN , together with the experimental
data (symbols). The total temperature window in Fig. 2
corresponds to only 15 mK below and above TN . C

4fðtÞ
increases significantly close to TN which is a first sign for a
large positive exponent �. The fitting procedure described
above yields a critical exponent of� ¼ 0:38� 0:03, which
describes the data in the entire temperature range around
the PT. Also, no saturation (due to rounding effects of the
PT) is observed at the lowest jtj values. Only for �T=T ¼
0:1% we were able to measure below jtj ¼ 10�3 where the
data points tend to saturate. It may be attributed to residual
sample inhomogeneities producing a microscopic smear-
ing of TN [27]. We took these small rounding effects into
account by a Gaussian distribution of TN (�TN=TN ¼ 3�
10�4) which has been carried out after the fitting procedure
to Eq. (1) as described above. This method has been
successfully applied to describe the rounding of specific-
heat peaks [28,29]. The very narrow distribution �TN=TN

verifies the high quality of the YbRh2Si2 single crystal.

The value of the critical parameter � is not sensitive to this
additional parameter in fit 3, as can be seen from Table I.
In Table II we have summarized the theoretical values of

� expected for the different universality classes, depending
on the symmetry of the system. It is obvious that the
observed exponent strongly deviates from all possible
theoretical ones: The largest value for � is calculated for
a 3D-Ising system, so that generally holds � � 0:11.
To establish the anomalous critical exponent we have

performed thermal-expansion measurements in the vicinity
of TN. The length change was registered perpendicular to
the tetragonal c axis on the same single crystal used for the
specific-heat measurements, described above. For details
of the measurement setup cf. Ref. [10]. Thermodynamic
relations reveal the same critical exponent for the thermal
expansion as for the specific heat [30]. However, it is more
accurate to extract the critical exponent by fitting a modi-
fied Eq. (1) directly to the measured relative length change,
�L=L, vs t [31]. Application of the same fitting procedure
as for the specific heat gives a critical exponent of the
thermal expansion of � ¼ 0:30� 0:15, in good agreement
with the specific-heat result. In Fig. 3 this fit is shown
below (solid line) and above (dashed line) TN , together
with the experimental data (symbols). However, the minor
variation of �L=L around TN (inset of Fig. 3) severely
complicates the analysis of the critical exponent and im-
pedes a more accurate determination of �. The absolute
temperature calibration is not as accurate as for the
specific-heat measurements which leads to a slightly lower
TN ¼ 68:5 mK. This, however, does not influence the
analysis of the critical exponent, performed in the same
way as in the case of the specific-heat data. Therefore, our
thermal-expansion results do confirm the surprisingly large
critical exponent in YbRh2Si2.
The anomalous critical exponent � ¼ 0:38 in YbRh2Si2

raises the question if this critical behavior might be indi-
cating a tendency towards weak first-order behavior.
However, no first-order PT in YbRh2Si2 is reflected either
in the imaginary part of susceptibility measurements on
this new generation of single crystals, or by hysteresis in
any transport and thermodynamic property. In addition, no
latent heat was resolved in our specific-heat measurements.
Assuming a (somewhat smeared) first-order PT and inte-
grating C4f over a temperature window of jtj � 0:1 one

FIG. 2 (color online). Specific heat vs reduced temperature
close to the AFM PT of YbRh2Si2. The data can be best fitted
with a critical exponent of � ¼ 0:38� 0:03.

TABLE II. Theoretically predicted critical exponent � of the
specific heat for different universality classes (after Ref. [2]).

Theory �

Landau mean field 0

2D Ising 0

n ¼ 1, 3D Ising þ0:110ð1Þ
n ¼ 2, 3D XY �0:015ð1Þ
n ¼ 3, 3D Heisenberg �0:133ð5Þ
n ¼ 2, chiral 3D XY þ0:34ð6Þ
n ¼ 3, chiral 3D Heisenberg þ0:24ð8Þ

TABLE I. Parameters derived from the fits of the specific-heat
data for a high-quality single crystal of YbRh2Si2 around the
AFM PT for different experimental data sets (see text). Fit 1a is
based on the same experimental data as fit 1, but the contribution
of the quantum fluctuations to the specific heat was subtracted
prior to the fitting procedure. In fit 3, a Gaussian distribution of
TN with �TN=TN ¼ 3� 10�4 was included.

�T=T TN Aþ Aþ=A�
Fit (%) (mK) (mJ=molK) �

1 0.5 71.3 15.4 0.58 0.37

1a 0.5 71.3 15.9 0.58 0.36

2 0.3 72.0 14.6 0.67 0.39

3 0.1 71.9 14.7 0.68 0.39
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obtains H � 1 mJ=mol as an upper boundary of the latent
heat which indeed would be difficult to resolve.

Discarding of first-order PT, the value of � ¼ 0:38 leads
to the conjecture that the AFM order of YbRh2Si2 might
belong to the new universality class of an XY antiferro-
magnet on a 3D stacked-triangular lattice, with � ¼
0:34� 0:06 [32], as experimentally confirmed on
CsMnBr3 [29]. However, for YbRh2Si2 such a scenario is
more than unlikely, because this system has no tendency to
chirality. The latter would require either a triangular ar-
rangement of the magnetic ions or a noncentrosymmetric
Yb site, allowing the Dzyaloshinsky-Moriya interaction to
operate. As long as the magnetic-ordering vector of the
magnetic phase and the dispersion relation of the magnetic
excitations are unknown, this question cannot be answered
finally. Alternatively, the PT at TN in YbRh2Si2 may well
be influenced by the pronounced quantum fluctuations of
the nearby local QCP which may substantially influence
the spatial fluctuations of the classical order parameter and,
thus, lead to internal degrees of freedom of the order
parameter, preventing a description within the framework
of the known universality classes.

In conclusion, we have presented high-accuracy
specific-heat measurements in the very close vicinity of
the antiferromagnetic phase transition of YbRh2Si2 result-
ing in an extremely sharp peak at TN ¼ ð72� 1Þ mK. A
detailed analysis of the critical parameters yields an
anomalous critical exponent � ¼ 0:38� 0:03 which can-
not be explained within the conventional universality
classes. Thermal-expansion measurements confirm this
violation of critical universality close to a continuous
quantum phase transition. Therefore, the observed large
critical exponent poses a considerable challenge for those
theories describing the magnetic phase transition and its
critical fluctuations in the vicinity of a QCP.

We acknowledge fruitful discussions with M. Brando,
P. Gegenwart, S. Kirchner, R. Küchler, C. Pépin, Q. Si, and
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