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We extend our theory of amorphous packings of hard spheres to binary mixtures and more generally to

multicomponent systems. The theory is based on the assumption that amorphous packings produced by

typical experimental or numerical protocols can be identified with the infinite pressure limit of long-lived

metastable glassy states. We test this assumption against numerical and experimental data and show that

the theory correctly reproduces the variation with mixture composition of structural observables, such as

the total packing fraction and the partial coordination numbers.
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Amorphous packings of hard spheres are ubiquitous in
physics: they have been used as models for liquids, glasses,
colloidal systems, granular systems, and powders. They are
also related to important problems in mathematics and
information theory, such as digitalization of signals, error
correcting codes, and optimization problems. Moreover,
the structure and density (or porosity) of amorphous mul-
ticomponent packings are important in many branches of
science and technology, ranging from oil extraction to
storage of grains in silos.

Despite being empirically studied for at least 60 years,
amorphous packings still lack a precise mathematical defi-
nition, due to the intrinsic difficulty of quantifying ‘‘ran-
domness’’ [1]. Indeed, even if a sphere packing is a purely
geometrical object, in practice dense amorphous packings
always result from rather complicated dynamical proto-
cols: for instance, spheres can be thrown at random in a box
that is subsequently shaken to achieve compactification
[2], or they can be deposited onto a random seed cluster
[3]. In numerical simulations, one starts from a random
distribution of small spheres and inflates them until a
jammed state is reached [4,5]; alternatively, one starts
from large overlapping spheres and reduces the diameter
in order to eliminate the overlaps [6–9]. In principle, each
of these dynamical prescriptions produces an ensemble of
final packings that depends on the details of the procedure
used. Still, very remarkably, if the presence of crystalline
regions is avoided, the structural properties of amorphous
packings turn out to be very similar. This observation led to
the proposal that ‘‘typical’’ amorphous packings should
have common structure and density; the latter has been
denoted random close packing density. The definition of
random close packing has been intensively debated in the
last few years, in connection with the progress of numerical
simulations [1,10].

Nevertheless, the empirical evidence, that amorphous
packings produced according to very different protocols
have common structural properties, is striking and calls for

an explanation. This is all the more true for binary or
multicomponent mixtures, where in addition to the usual
structural observables, such as the structure factor, one can
investigate other quantities such as the coordination be-
tween spheres of different types, and can study their varia-
tion with the composition of the mixture.
In earlier attempts to build statistical models of pack-

ings, only the main geometrical factors, such as the relative
size and abundance of the different components, were
taken into account [11–13]. More precisely, these models
focus on a random sphere in the packing and its first
neighbors, completely neglecting spatial correlations be-
side the first shell and all the global geometric constraints.
This already accounts for the main qualitative structural
properties of random packings. However, in order to obtain
a quantitative description, some free parameters have to be
introduced and adjusted to match with experimental data.
To go beyond these simple models, many authors pro-

posed that random packings of hard spheres can be thought
of as the infinite pressure limit of hard sphere glasses [14–
20]. This is very intuitive since a glass is a solid state in
which particles vibrate around amorphous reference posi-
tions, and vibrations are reduced on increasing pressure. A
typical algorithm attempting to create a random packing
starts at low density and compresses the system at a given
rate. During this evolution, when the density is high
enough, relaxation becomes more and more difficult until
at some point the system is stuck into a glass state [19,20];
at this point further compression will only reduce the
amplitude of the vibrations. In a nutshell, this is why
amorphous packings can be identified with glasses at infi-
nite pressure.
The main advantage of this identification, if it holds, is

that a glass is a metastable state that has a very long
lifetime; therefore, its properties can be studied using
concepts of equilibrium statistical mechanics. In this way
a complicated dynamical problem (solving the equations of
motion for a given protocol) is reduced to a much more
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simple equilibrium problem. In [18,20] it was shown, in the
case of monodisperse packings, that this strategy is very
effective since it allows the computation of structural
properties of random packings directly from the
Hamiltonian of the system, without free parameters and
in a controlled statistical mechanics framework. Note that
the existence of an equilibrium glass transition in hard
sphere systems (or in other words the existence of glasses
with an infinite lifetime) has been questioned [5,21].
Although very interesting, this problem is not relevant
for the present discussion since we are only interested in
long-lived metastable glasses that trap dynamical algo-
rithms. At present it is very well established by numerical
simulations [22,23] that for system sizes of N & 104 par-
ticles and on the time scales of typical algorithms, meta-
stable glassy states exist, at least in d � 3. This is enough
to compare with most of the currently available numerical
and experimental data. Finally, the relation of this ap-
proach to special packings such as the maximally random
jammed state [1] and the J point [8] has been discussed in
detail in [20].

The aim of this Letter is to extend the theory of [18,20]
to binary mixtures. This allows the quantitative compari-
son of the predictions of the theory and the results of
numerical simulations. We will focus, in particular, on
the variation of density and local connectivity as a function
of mixture composition. These results constitute, in our
opinion, a stringent test of the assumption that random
packings reached by standard algorithms can be identified
with infinite pressure metastable glasses.

Theory.—The equilibrium statistical mechanics compu-
tation of the properties of the glass is based on standard
liquid theory [24] and on the replica method [17,25] that
has been developed in the context of spin glass theory
[26,27]. For monodisperse hard spheres, it has been de-
scribed in great detail in [20]. The extension to multicom-
ponent systems is straightforward following [28]; details
are given in Ref. [29].

Here we just recall some features of this approach, based
on simple physical considerations. The basic assumptions
of the method are (i) that crystallization and phase separa-
tion are strongly suppressed by kinetic effects so that the
liquid can be safely followed at high density, and (ii) that at
sufficiently high density, the liquid is a superposition of a
collection of amorphous metastable states. Namely, in the
liquid, the system spends some time inside one of these
states, and sometimes undergoes a rearrangement that
leads to a different state [30]. Each state is characterized
by its vibrational entropy per particle, denoted by s, and
the number of such states is assumed to be exponential in
N, so a configurational entropy is defined as �ð’; sÞ ¼
N�1 logN ð’; sÞ, withN ð’; sÞ being the number of states
having entropy s at density ’. On increasing the density,
the liquid is trapped for longer and longer times into a
metastable state, until at some point the transition time
becomes so long that for all practical purposes the system
is stuck into one state; it then becomes a glass. To compute

the properties of the glassy states, the central problem is to
compute the function �ð’; sÞ. This can be done by means
of a simple replica method introduced by Monasson [27].
One introducesm copies of each particle, constrained to be
close enough, in such a way that they must be in the same
metastable state. Then the total entropy of the system of m
copies is given by Sðm;’jsÞ ¼ msþ �ð’; sÞ; the first
term gives the entropy of the m copies in a state of entropy
s, while the second term is due to the multiplicity of
possible states. The total entropy of the system at fixed
density ’ is obtained by maximizing over s; i.e.,

S ðm;’Þ ¼ max
s

½�ð’; sÞ þms� ¼ �ð’; s�Þ þms�; (1)

where s�ðm;’Þ is determined by the condition @s�ð’; sÞ ¼
m. Then it is straightforward to show that

s�ðm;’Þ ¼ @mSðm;’Þ;
�½’; s�ðm;’Þ� ¼ �m2@m½Sðm;’Þ=m�: (2)

The knowledge of Sðm;’Þ allows the reconstruction of the
curve �ð’; sÞ for a given density by a parametric plot of
Eq. (2) by varying m. The function �ð’; sÞ gives access to
the internal entropy and the number of metastable glassy
states; from this one can compute their equation of state,
i.e., the pressure as a function of the density. In particular,
for each set of glassy states of given configurational en-
tropy �j, one can compute the density ’j (jamming den-

sity) at which the glassy states’ pressure diverges. Since ’j

turns out to depend (slightly) on �j, a prediction of the

theory is that different glasses will jam at different density:
amorphous packings can be found in a finite (but small)
interval of density [19,20].
Results for binary mixtures.—The details of the compu-

tation of the function Sðm;’Þ for a general multicompo-
nent mixture, based on [20], can be found in Ref. [29].
Here we consider a binary mixture of two types of spheres
� ¼ A, B in a volume V, with different diameter D� and

density �� ¼ N�=V. We define r ¼ DA=DB > 1 the di-

ameter ratio and x ¼ NA=NB the concentration ratio;
V3ðDÞ ¼ �D3=6 the volume of a three-dimensional sphere
of diameter D; ’ ¼ �AV3ðDAÞ þ �BV3ðDBÞ the packing
fraction; and � ¼ �BV3ðDBÞ=’ ¼ 1=ð1þ xr3Þ the volume
fraction of the small (B) component.
Once an equation of state for the liquid has been chosen,

the jamming packing fraction ’j is given in terms of �j by

the solution of �jð’Þ ¼ �j. The average coordination

numbers at ’j are denoted z��ð’jÞ, but we checked that

their variations with ’j are negligible. We used in d ¼ 3

the equation of state proposed in [31], using the Carnahan-
Starling equation for the monodisperse system [24]. The
latter, as well as�jð’Þ and z��ð’jÞ, are given, respectively,
in Eqs. (19), (14), and (17) in Ref. [29].
Numerical simulations.—We produced jammed pack-

ings of binary mixtures of N ¼ 1000 hard spheres using
the code developed by Donev and co-workers [32,33]. In
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this algorithm spheres are compressed uniformly by in-
creasing their diameter at a rate dD=dt ¼ 2�, while event-
driven molecular dynamics is performed at the same time.
In order to obtain a perfectly jammed final packing, the
later stages of compression must be performed very slowly.
On the other hand, at low density slow compression is a
waste of time, since the dynamics of the system is very fast.
Following [34], we find a good compromise by performing
a four stages compression: starting from random configu-
rations at ’ ¼ 0:1, (i) the first stage is a relatively fast
compression (� ¼ 10�2) up to a reduced pressure p ¼
�P=� ¼ 102; then we compress at (ii) � ¼ 10�3 up to
p ¼ 103, (iii) � ¼ 10�4 up to p ¼ 109, and (iv) � ¼ 10�5

up to p ¼ 1012. The first stage terminates at a density ’�
0:6, and is fast enough to avoid crystallization and phase
separation. During the following stages the system is
already dense enough to stay close to the amorphous
structure reached during the first stage. Still, little re-
arrangements (involving many particles) are possible and
allow reaching a collectively jammed final state [34]. In the
final configurations, we observe a huge gap between con-
tacting (typical gap�10�11 D) and noncontacting (typical
gap*10�6 D) particles. We then say that two particles are
in contact whenever the gap is smaller than 10�8 D.
Typically, a small fraction (&5% of the total) of rattlers,
i.e., particles having less than 4 contacts, is present. Once
these are removed, the configuration is isostatic (the total
number of contacts is 6N) within 1% accuracy.

Comparison of theory and numerical/experimental
data.—During the four stages of compression, the pressure
initially follows the liquid equation of state up to some
density close to the glass transition density [20,35,36].
Above this density, pressure increases faster and diverges
on approaching jamming at ’j. The exact point where this

happens depends on compression rate. This is a nice con-
firmation of a prediction of the theory that different glassy
states jam at different density; it was already observed in
[5,34] and recently discussed in great detail in [23,37].
Within the theory ’j is related to �j, the value of config-

urational entropy at which the system falls out of equilib-
rium; hence there is one free parameter, �j, that depends

on the compression protocol. The equation of state of the
glass obtained numerically with our protocol corresponds
within our theory to �j � 1:5. We decided to use the value

�j ¼ 1:7 that gives the best fit to the numerical data. This

is consistent with previous observations that the configura-
tional entropy is close to 1 when the system falls out of
equilibrium [38]. A detailed discussion of the behavior of
pressure can be found in Ref. [29].

In Fig. 1, we report the jamming density for different
mixtures, putting together our numerical results and ex-
perimental data from Ref. [39] and the theoretical results.
Note that a single ‘‘fitting’’ parameter�j, which is strongly

constrained, allows the description of different sets of
independent numerical and experimental data. The predic-
tions of our theory are qualitatively similar to previous

ones [12,13], but the quantitative agreement is much better.
Interestingly, a similar qualitative behavior for the glass
transition density has been predicted in [35,36]; although
there is no a priori reason why the jamming and glass
transition density should be related [23], it is reasonable to
expect that they show similar trends [36].
Finally, in Fig. 2 we report the average partial contact

numbers for different mixtures. These values have been
obtained by removing the rattlers from the packing. As
discussed above, the total coordination is close to the
isostatic value z ¼ 6. This is also a nontrivial prediction
of the theory (see Ref. [29]). As can be seen from Fig. 2,
the computed values agree very well with the outcome of
the numerical simulation, at least for r not too large. Some
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FIG. 1 (color online). Packing fraction ’j as a function of � ¼
1=ð1þ xr3Þ at fixed r. Filled symbols are numerical data from
this work. Open symbols are experimental results from Ref. [39].
Lines are predictions from theory, obtained fixing �j ¼ 1:7.

Note that the large r–small � region could not be explored,
since for such very asymmetric mixtures the large spheres form a
rigid structure while small spheres are able to move through the
pores and are not jammed [12,13].
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FIG. 2 (color online). Partial average coordination numbers
(small-small, small-large, large-small, large-large) as a function
of volume fraction of the small particles � ¼ 1=ð1þ xr3Þ for
different values of r. Filled symbols are numerical data from this
work. Open symbols are experimental data from Ref. [40]. Note
that in the lower right panel a different scale is used for zls.
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discrepancies are observed in the contacts of the large
particles for large r. We produced packings of N ¼ 104

and checked that these are not finite size effects. Also,
inspection of the configurations seems to exclude the pres-
ence of phase separation. However, for these values of r
and x, a large fraction of rattlers (�10%) is present within
the small particles. This might affect the determination of
the partial contacts. It would be interesting to check if
better results are obtained using different algorithms.
Experimental data from [40] are also reported in the right
panel of Fig. 2.

Conclusions.—In this Letter we have extended our the-
ory of amorphous packings to binary mixtures and have
tested it against numerical and experimental data. In par-
ticular we have shown that the theory correctly predicts the
variation of total density (or porosity) and local coordina-
tion with mixture composition. We have also shown that
the behavior of pressure during compression follows the
predictions of the theory. A striking prediction of the
theory is that different compression procedures lead to
different final densities, which seems to be confirmed by
numerical data (see also [23,37]). Note that the only free
parameter is the value of �j, which is still strongly con-

strained (it must be close to 1). It affects slightly the values
of density (by varying �j in the reasonable range one can

change ’j by �10%; see Fig. 1 in Ref. [29]) and does not

affect at all the curves in Fig. 2 for the local coordinations.
As stated in the introduction, we believe that these results
constitute a stringent test of the idea that amorphous pack-
ings can be considered as the infinite pressure limit of
metastable glassy states. Note that our results have no
implications for the existence of an ideal glass transition
[5,21]. Indeed, we only used numerical data obtained using
fast compressions. It is possible that by using much slower
compressions the physics changes dramatically and the
glass transition is avoided. Still, these time scales are out
of reach of current algorithms and experimental protocols.

We wish to thank A. Donev for his invaluable help in
using his code, and L. Berthier for many important sugges-
tions and for providing equilibrated configurations at high
density.
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