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Amorphous silica density at ambient pressure is known to depend on thermal history (through the

quenching rate) but also, at room temperature, on the maximum pressure applied in the past. Here we

show that beyond density, a mechanical loading can endow the structure with an orientational order.

Molecular dynamics simulations show evidence that amorphous silica develops a permanent anisotropic

structure after extended shear plastic flow. This anisotropy which survives for an unstressed specimen is

revealed markedly by the fabric tensor computed over the Si-O-Si orientations, albeit the SiO4 tetrahedra

microstructure remains mostly unaltered.
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The plasticity of amorphous media, which can be easily
evidenced via indentation or scratch tests [1], has a very
different nature from its counterpart for crystalline media,
since no elementary entities such as dislocations whose
evolution controls plastic flow can be easily defined [2,3].
The current view is that spatially distributed local restruc-
turing rather than extended defect motion (such as dislo-
cation) is responsible for irreversible strains in amorphous
materials [4,5]. At a very local scale, under load, a small
group of atoms (called a transformation zone) may undergo
rearrangements, a change of conformation eventually af-
fecting the topology of the atomic bonds which will con-
tribute to an elementary increment in irreversible strain.
Although a complete description of these transformation
zones is extremely complex, and cannot be cast into simple
categories, a statistical analysis capturing the key proper-
ties of these zones is an attractive route for relating the
macroscopic mechanical behavior to the underlying micro-
structural counterpart [4].

In contrast with dislocations which naturally lead to
isochoric plastic deformation, transformation zones may
densify or dilate as they rearrange. Indeed at a macroscopic
scale, plasticity of silicate glasses is known to exhibit
permanent densification [6,7] from a few percents for
soda-lime glasses [8] to values as large as 20% in the
extreme case of amorphous silica [9,10]. This densification
naturally affects shear plasticity, and hence pressure and
shear stress are to be coupled in the yield criterion of
amorphous silica [11].

Plasticity of structural glasses is furthermore character-
ized by a significant hardening behavior [9,10]. The yield
surface evolves with the mechanical loading. This means,
in particular, that, when applying stress in a given direction
(pure shear, pure hydrostatic pressure, etc.), the value of
the elastic limit depends on the history of the loading.

To account for this dependence on mechanical history a
proper description of plasticity thus requires the use of
additional internal variables. The first one is obviously
density, and indeed a recent study of densification with
pressure allows one to characterize the density hardening
of silica [10]. The necessity to include more internal var-
iables than the mere density is a difficult question to
address. Experimentally, plasticity of amorphous media
calls for a high level of stress and confinement which can
either be met in an indentation-type test (with the compli-
cation of the very strong spatial heterogeneity of the stress
state) or in an anvil diamond cell where shear cannot be
imposed. Thus it appears very difficult to follow a particu-
lar stress path which would allow one to answer this
question. Hence, in the present study, we will resort to
molecular dynamics simulations where homogeneous
loadings with an arbitrary stress path can be imposed.
As for granular media plasticity, shear reversal experi-

ments show that a simple scalar internal variable is not
sufficient to account for the mechanical behavior, and a
tensor-valued internal variable, characterizing the geome-
try packing, is needed [12]. For this purpose, a natural
candidate is the so-called fabric tensor, F ¼ hn � ni,
which captures the mean orientation of the contact nor-
mals, n, through the spatial average of their dyadic prod-
uct. This tensor characterizes an anisotropic texture of the
medium. Experimental and numerical studies of granular
media [13,14] have shown that such was the case after
shearing. Indeed, more contacts are oriented along the
direction(s) of compression. Similarly, the same tools
have recently been used to study the rheology of foams
[15].
The fabric tensor can be characterized by its three

eigenvalues, �i, for 1< i < 3. The fact that n is a unit
vector implies that the trace of F is equal to unity, or
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P
i�i ¼ 1 Thus, for an isotropic medium, the three eigen-

values are equal to 1=3. In case of anisotropy, degeneracy
is lifted and different eigenvalues �i are measured. In order
to give a quantitative scalar estimate of this anisotropy, the
following scalar � parameter, proportional to the norm of
the deviatoric part of F, is defined:
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For an isotropic medium, � ¼ 0, and the prefactor has
been chosen such that in the case of full anisotropy, f�ig ¼
f1; 0; 0g, we have � ¼ 1. This quantitative parameter,
which is built in the same spirit as an effective shear stress,
allows one to compare results obtained in different stress
geometries. Pursuing our analogy, it is natural to consider a
similar fabric tensor for amorphous silica. We will show
that indeed, besides the usual (reversible) anisotropy in-
duced by an elastic strain, plasticity induces a series of
structural rearrangements which after unloading endow
silica with a remnant anisotropic structure. The latter state
can be regarded as a novel phase of amorphous silica.

In the case of silica, chemistry imposes that each silicon
atom is encaged in a tetrahedron of four oxygen atoms
forming a SiO4 elementary unit. These tetrahedra are
bounded to each other through a common oxygen atom.
They are extremely robust and remain virtually unaltered
under mechanical loadings. However, pairs of tetrahedra
have much more freedom in their relative orientations.
Henceforth, it is natural to build the equivalent of a fabric
tensor from the ‘‘contacts’’ between neighboring tetrahe-
dra. Thus for all Si-O-Si triplets, we consider the unit
vector n which connects all next to nearest neighbors
[i.e., Si-Si atoms, see Fig. 2(a)]. The fabric tensor F as
defined above is built up by averaging over all next to
nearest neighbor Si atoms. The fact that second neighbors
are to be considered is a challenge to study this anisotropy
experimentally using classical tools for structural analysis.

Amorphous silica was studied via molecular dynamics
(MD) computer simulations. This technique allows us to
impose an extended (simple) shear along one direction
under constant volume, and reverse it. This particular stress
path is able to reveal whether plasticity is accompanied by
any structural change and, in particular, anisotropy. MD
simulations are performed on amorphous silica (a-SiO2),
using the empirical interatomic potential developed by
Vashishta et al. [16–18]. This potential incorporates steric
repulsion, charge transfer, and electronic polarizability of
atoms through pairwise interaction terms. Covalent effects
in silica are included through bond bending and bond
stretching three-body terms. The parameters of the poten-
tial have been adjusted by measurements of structural cor-
relations, elastic moduli, and fracture toughness [16,19].
The a-SiO2 samples were first prepared by melting (i.e.,
heating to 4000 K) 117 912 (cubic box of length
12.088 nm) atoms of ideal �-cristobalite crystal. The
sample was cooled to 2500 K at a rate of 1 K=�t (where

�t is the time step) and allowed to relax for 60 000�t
(large specimen). The cooling process was repeated at
1500 K, 600 K, 300 K, and 5 K. Afterwards a conjugate
gradient method is used to cool the sample to 0 K. The
temperature is once again elevated to 300 K in order to
conduct simulations at room temperature. Periodic bound-
ary conditions have been invoked in all simulations.
Shear plasticity of this model silica glass has been

studied on 12 independent samples. Each sample was
sheared by applying an external shear in small increments
such that the volume was conserved (NVT ensemble).
Between each subsequent shear the sample was allowed
to relax. Also during the simulations the temperature was
held fixed at 300 K using a thermostat. Two different shear
strain rates have been used, 10�4 ps�1 and 10�2 ps�1. It is
to be stressed that these shear rates are considerably higher
than the highest ones that may be considered experimen-
tally. However lower shear rates cannot conceivably be
imposed within the present framework of molecular dy-
namics. Therefore the effect of long time relaxation pro-
cesses such as atom diffusion is out of reach of the present
study.
Figure 1 depicts a typical stress strain curve. The initial

behavior corresponds to linear elasticity; for the faster
strain rate here represented, a stress overshoot is visible
before a plateau corresponding to the stationary plastic
regime. As discussed in [20], the amplitude of this stress
overshoot is dependent on the strain rate and almost dis-
appears for the slower rate. In addition to this monotonic
test, unloading to zero shear stress has been performed
starting from different values of the maximum total strain:
2.5%, 5%, 7.5%, 12.5%, 17.5%, and 25%. As can be seen in
Fig. 1, beyond 5% strain (which corresponds to a shear
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FIG. 1 (color online). The evolution of the average stress of 12
independent samples, composed of 117 912 atoms each, when
sheared: (1) from 0% to 30% [black solid line], unloaded
(2) from þ2:5% [light gray (sky blue) dash-dotted line],
(3) from þ5% [gray (lavender) solid line], (4) from þ7:5%
[light gray (pink) dashed line], (5) from þ12:5% [dark gray
(green) dash-dotted line], (6) fromþ17:5% [red dotted line], and
(7) from þ25% [dark gray (blue) dash-dotted line]. (Note: the
deformation rate is 10�2 per ps.)
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stress of about 2.25 GPa), permanent plastic deformation
sets in. During the simulations the pressure was monitored,
and it was found to increase from �0 GPa during the
elastic loading stage up to �2:5 GPa during plastic flow.
Further details can be found in [21].

In Fig. 2 the evolution of the eigenvalues of the fabric
tensor is shown along shear loading and unloading from
various values of total strain. At rest, isotropy of the glass is
almost perfectly obtained; the three eigenvalues are equal
within a precision of 10�3. Shear loading then induces first
an elastic strain which renders the medium anisotropic.
The elastic shear strain naturally leads to the lifting of the
degeneracy: the eigenvalues take different values with a
growing shift. In the elastic regime, a change in fabric
tensor can be shown to be proportional to the strain. Note
that we recover here more or less the behavior of the shear
stress: a linear regime related to elasticity followed by a

bump and a stationary elastoplastic regime. In this regime,
the shear-induced anisotropy is marked and eigenvalues
are clearly separated. In this plastic flow regime, where the
elastic strain remains invariant, so does the fabric tensor.
When unloading, the fabric tensor eigenvalues linearly
return to their original value showing that the initial rise
of anisotropy is perfectly reversible, and hence of elastic
nature.
For "max ¼ 2:5% and 5%, isotropy is approximately

obtained at zero deformation; the glass has recovered its
original state. However, unloading from larger deforma-
tions "max ¼ 7:5%, 12.5%, 17.5%, and 25% we observe
that isotropy is never fully recovered. The beginning of the
unloading stage shows a linear evolution somewhat com-
parable to the first elastic loading, consistent with the fact
that the incremental strain during unloading is expected to
be purely elastic. It is however noteworthy that a significant
plastic strain occurs during this unloading phase showing a
strong kinematic hardening, and a very severe shrinkage of
the elastic domain. The permanent plastic shear deforma-
tion obtained at zero shear stress can be associated to the
minimal gap between the eigenvalues of the fabric tensor,
but this gap is clearly growing well beyond the numerical
uncertainty.
The same analysis can be performed in a more quanti-

tative manner by following the evolution of the scalar
anisotropy index � under these shear loading and unload-
ing tests and is presented in Fig. 3. The anisotropy index
decreases under unloading, reaches a minimum value,
�min, approximately when the shear stress is null. If the
load is reversed to negative values, � rises again to saturate
at a similar level as for direct shear. For a maximum
deformation "max ¼ 2:5%, 5%, we recover after unloading
�min � 10�3: no change is noticeable when compared with
the original state. For larger deformations, however, a clear
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FIG. 2 (color online). (a) Sketch of the ‘‘contacts’’ Si-Si be-
tween neighboring SiO4 tetrahedra used to build the fabric tensor
F ¼ hn � ni. Evolution of the eigenvalues of the fabric tensor
when sheared from 0% to 30% (b) and unloaded from 2.5% (c),
5% (d), 7.5% (e), 12.5% (f), 17.5% (g), and 25% (h). Before
loading the material is isotropic; the 3 eigenvalues should be
equal within the errors bars. Upon loading (b), degeneracy is
lifted and anisotropy first increases reversibly (c, d) due to the
elastic strain. Then plasticity sets in (e–g), and after unloading,
the material is left with a remnant structural anisotropy.
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FIG. 3 (color online). Evolution of the anisotropy index �
under shear loading and unloading (same as above). The mini-
mum value of �, black circles, is associated with the state of the
structure under zero shear stress. Permanent deformation is
characterized by a nonzero value of the anisotropy index: the
glass structure has become anisotropic.
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increase of �min is observed up to values close to 10�2,
well above the numerical uncertainty.

These results are summarized in Fig. 4, which shows the
evolution of the minimum gap, �min, versus the maximum
deformation, "max. The results obtained with a much
slower strain rate 10�4 ps�1, (one hundred times slower
than the previous case) are also shown in the same figure. It
is remarkable that both curves almost superimpose each
other. Once silica has experienced shear plasticity, a sig-
nificant anisotropy persists even after unloading. Note that
an additional relaxation towards zero stress state (NPT
ensemble) during 20 ps after unloading was performed.
This ensures the elimination of normal stresses due to the
shearing in plane deformation. As shown in the insert, the
normal stresses naturally induce an additional anisotropy
of trivial elastic origin which has to be eliminated before
attesting for the presence of the plasticity-induced anisot-
ropy discussed in the present study.

On the basis of molecular dynamics study of plasticity of
amorphous silica under simple shear, a nonreversible an-
isotropy sets in and appears stable (at the time scale of
MD). Detailed structure investigation could not reveal any
significant deviation from the amorphous structure based
on, e.g., interatomic distances. The eigenvectors of these
Si-O-Si directions are aligned with the principal strain or
stress directions. Because of the relatively short time scale
naturally associated with MD simulations, an experimental
validation of this observation is needed to validate our
conclusions, in particular, concerning the stability of this
phase. Experimentally, anisotropy is expected to give rise
to birefringence, a property which might be more easily
accessible than structural analyses. Using standard photo-
elasticity parameters for silica and the maximum anisot-

ropy obtained in the present work � ¼ 5� 10�3, a crude
estimate of the birefringence gives an index contrast �n ¼
10�3. Such a phenomenon may for instance be tested in the
framework of rotational anvil cell experiments [22,23].
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FIG. 4 (color online). Anisotropy parameter after unloading
�min vs maximum strain "max for two different imposed strain
rates 10�2 ps�1 (red circles) and 10�4 ps�1 (blue squares). After
shear unloading, normal stresses persist due to the plane defor-
mation geometry and amplify the structural anisotropy (see
insert). After relaxation of these stresses with an additional
NPT step of 20 ps, a stress free state is obtained, while the
silica structure still exhibits a significant anisotropy index.
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