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In respect of their symmetry properties, toroidal magnetically confined plasmas have much in common

with the Taylor-Couette flow. A symmetry-based analysis (equivalent bifurction theory) has proved very

powerful in the analysis of the latter problem. This Letter discusses the applicability of the method to

nuclear fusion experiments such as tokamaks and pinches. The likely behavior of the simplest models of

rotationally symmetric tokamaks is described, and found to be potentially consistent with observation.
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Introduction.—The most developed of the modern mag-
netic fusion concepts is the tokamak; see, e.g., Ref. [1].
After 40 years of research, a huge amount is known about
tokamak behavior. However, a complete understanding of
some of the most prominent phenomena has not yet been
achieved. The disparate time and spatial scales mean the
problem will remain very computationally demanding for
the foreseeable future, whereas diagnosing the behavior of
some aspects of extremely hot plasma is still a very chal-
lenging problem for the experimenter.

In these circumstances, it is natural to consider analo-
gous experiments involving liquids. Seemingly, the most
intensively studied configuration most analogous to toroi-
dal plasma devices, is the Taylor-Couette (T-C) experi-
ment. This consists of a tall, annular cylinder of fluid
confined by vertical (curved) walls which may rotate in-
dependently at different, fixed speeds. There are four ex-
ternal parameters (two rotation rates and two radii of
cylinders) plus those determined by the properties of the
fluid such as its viscosity, see, in particular, Ref. [2] Sect. 6.
The experiment has also been described both in the general
literature [[3] Sect. 5] and by Feynman [[4] Sect. 41 6].

For low rotation rates and reasonable values of the other
parameters, T-C flow consists of a steady motion in the
azimuthal direction which varies only in the radial direc-
tion. However, as rotation rates increase, this symmetric
state becomes unstable to a wide variety of different modes
depending on the particular values of the parameters. The
analogy with the tokamak should begin to become appar-
ent: in its basic form as an Ohmically heated torus with
circular cross-section, the tokamak is also a four-parameter
system, with imposed magnetic field and total current
providing the driving energy rather than cylinder rotation,
and two geometrical parameters of major and minor radius,
where the latter is analogous to fluid layer thickness.

The bifurcating modes in the T-C flow may be classified
in terms of their symmetries. All possible symmetries may
be discovered by studying the group of symmetries of the
experiment GSðT� CÞ. From Ref. [2] Sect. 6, this group is
SOð2Þ � ðSOð2ÞxvZð2ÞÞ which may be written SOð2Þ �
Oð2Þ, where Oð2Þ ¼ SOð2ÞxvZð2Þ. SOð2Þ is the rotation

group, Zð2Þ is the reflection group and the symbol xv
denotes the semidirect product. Possible mode patterns are
given by the isotropy subgroups of GSðT� CÞ, which are
numerous. Moreover, when the mathematical analysis
showed that certain allowed patterns had not so far been
described experimentally, newer experiments were per-
formed which successfully exhibited these symmetries.
Symmetries of the tokamak.—The importance of T-C

flow for magnetic fusion is that a group with very simi-
lar, but not identical structure, namely ðSOð2Þ �
SOð2ÞÞxvZð2Þ ¼ GSðTokÞ is the group of symmetries of
the ‘‘periodic cylinder’’ magnetohydrodynamic (MHD)
model of the tokamak and magnetic pinch. The periodic
cylinder is a circular cylinder with its flat ends identified
one with another, designed to approximate a large aspect
ratio torus, ie. one with major radius much larger than
minor radius. There are two SOð2Þ subgroups correspond-
ing to rotations in the two angular coordinates � and� and
a reflection symmetry ð�;�Þ ! ð��;��Þ. To understand
the latter symmetry, it is helps to remember that the (rate of
change of) current in poloidal field coils generally pro-
duces the plasma current in the tokamak, so that device
operation is fundamentally controlled by two orthogonal
vector fields, the currents in, respectively, the toroidal and
poloidal field coils. Since the single-fluid MHD equations
are invariant under change of sign of magnetic field, re-
versing the current in both sets of coils leads to the same
dynamics.
Analogy with the T-C flow suggests the tokamak will

exhibit a wide variety of behavior as parameters are varied.
In practice, the baseline H-mode operation for present
ITER tokamak experiments [5] is planned on the basis of
a central sawtooth mode, the frequent occurrence of edge
localized modes (ELMs), the possible occasional presence
of other large scale ‘‘tearing’’ modes, and anomalous heat
loss caused apparently by many small-scale modes.
GSðT� CÞ and GSðTokÞ, although slightly different,

have at least three subgroups in common, namely SOð2Þ,
Zð2Þ and Oð2Þ. Therefore, potential analogues between
phenomena in T-C flow and tokamaks are listed in Table
I, on the basis of their respective symmetries. The possible
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link between the sawtooth oscillation and steady rolls is
discussed below. The association has to be tentative not
only because the groups differ, but also because the evo-
lution of the tokamak design has been away from circular
cross-section, so that real devices deviate significantly
from poloidal (�) rotational symmetry.

The reflection combines with the azimuthal (�) rota-
tional symmetry so that noncircular tokamaks may be
treated with certainty as having only Oð2Þ symmetry.
Moreover, individual particle motion is not invariant under
reversal of sign of magnetic field, so a less collisional
‘‘kinetic’’ plasma (e.g., to which a two-fluid MHD model
applies) may not have the Zð2Þ symmetry property.

Equivariant bifurcation theory.—Equivariant bifurca-
tion theory means bifurcation theory analyses performed
in the presence of symmetry [6,7]. Bifurcation theory is the
mathematical theory of the onset of instability in nonlinear
systems, see, for example, Kuznetsov [8]. The key idea is
that near onset, system behavior is governed by a small
number of coupled ordinary differential equations (ODEs),
with nonlinear interactions among the variables repre-
sented by low order terms in a multivariable Taylor expan-
sion. It is a natural generalization of linear stability theory
which can be regarded as a truncation of the Taylor series
at first order.

Frequently the time dependent variables represent mode
amplitudes, and an example frequently quoted concerning
the effect of symmetry is when the problem is invariant
under reflection. For then both (þa) and (�a) must be
solutions of the ODEs, which rules out terms such as a2 in
the governing equations, which do not change sign when a
does.

Magnetic fusion experiments might be expected to be a
fertile ground for bifurcation theory, since typically the
performance is optimal close to the onset of instability.
Nonetheless, there is the objection that the radius of con-
vergence of the Taylor series may, if plasma viscosity is
neglected, be of order S�2, where S is the Lundquist
number, and values of S range up to 1012. It is therefore
conceivable that the range of validity of the Taylor series
approximation is too small to be quantitatively useful.
However, the qualitative predictive powers of bifurcation
theory are usually good until another instability emerges,
which is why the theory emphasizes qualitative (or more
formally topological) properties. Moreover, as far as quan-
titatively interpreting experiment is concerned, it is con-
ceivable that a renormalization approach may be adequate,

e.g., using a low order rational polynomial to represent the
neglected higher order terms. There is the caution that
when the spatial dependence of the unstable mode changes
as fast as it grows, e.g., as occurs in the simplest MHD
model of m> 1 tearing modes [9], even renormalization
may not be enough to relate observations quantitatively to
mode amplitude. Qualitative behavior should be the same
for these modes, however, and in any event, the relation of
the simplest theories to experiment is unclear, because they
do not include thermal effects which are now believed to be
vital for interpreting experiment.
Axisymmetry.—From the earlier discussion, a first analy-

sis of tokamaks using equivariant bifurcation theory need
only assume the SOð2Þ symmetry in the azimuthal direc-
tion, applicable whether a particle or fluid model is appro-
priate. Introduce an explicit spatial dependence, by
supposing that the angle about the axis of symmetry is
�, then symmetry-breaking solutions yðtÞ may be written

y ¼ a expðin�Þ þ �a expð�in�Þ: (1)

Here the overbar denotes complex conjugate, n is (integer)
mode number and aðtÞ is the time dependent complex
mode amplitude.
The aim is to produce low order polynomial nonlinear

equations which are invariant under rotation. It will be seen
that such an evolution equation for a may not contain
quadratic terms, ie. any of the terms a2, �a2, or a �a. For,
translating the angle � by p=n in Eq. (1) shows that if a
gives a solution to the problem, aeip must also be a
solution. However, the quadratic terms acquire factors of
either e�2ip or ei0 ¼ 1. Similarly, cubic terms such as a3

and �a3 are excluded. Hence the governing equation for a to
cubic accuracy is of Landau form

_a ¼ �aþ �jaj2a; (2)

where � and � are complex constants.
Equation (2) is easier to understand if the representation

a ¼ r expði�Þ is introduced where r is the (real) amplitude
of complex number a and � is its phase. Differentiating

_a ¼ ð _rþ ir _�Þ expði�Þ (3)

substituting in Eq. (2) multiplied by expð�i�Þ, writing
� ¼ �r þ i�i and � ¼ �r þ i�i, and equating real and
imaginary parts gives

_r ¼ �rrþ �rr
3; (4)

_� ¼ �i þ �ir
2: (5)

Equation (4) shows that the amplitude r will have the
sudden switch-on typical of the Hopf bifurcation as �r

increases through zero, and if �r < 0 will saturate at finite
amplitude. Concerning Eq. (5), note that there is no re-
striction on the size of �i, unlike �r which must be small
near the bifurcation point. Hence, for small r, the solution y
now contains the multiplicative term expði�itÞ; i.e., the

TABLE I. Tokamak and T-C flow analogues.

Taylor-Couette Tokamak

Steady sheared flow MHD equilibrium

Rolls (Taylor cells) Sawtooth oscillation

Rotating wave Mirnov oscillation

Modulated rotating waves Complex Mirnov signal
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solution is generically of traveling-wave type. Such trav-
eling waves are expected in dissipative systems on general
symmetry grounds [10], where it is also argued that the
rotating waves will become unstable to modulated travel-
ing waves [10]. The limitations of symmetry arguments
are, however, evident in that there is no constraint on the
sign of �i—the mode frequency may increase or decrease
with mode amplitude.

This is a convenient point to comment upon the impor-
tance of the hitherto neglected Zð2Þ symmetry. If � is
imagined to correspond to a linear combination of � and
�, then Eq. (1) with � replaced by �� is also a solution.
This implies that a ¼ �a; hence, a is real and y corresponds
to the saturated helical waves (representing tearing modes)
expected in single-fluid MHD. Confidence in the applica-
bility of Eq. (2) when a is real may be increased when it is
realized that it also appears in Ref. [11] for a detailed
analysis of the m ¼ n ¼ 1 resistive mode, see additionally
Ref. [12], Appendix.

Variational constraint.—There is a further constraint
which may well be relevant to tokamaks, namely, that the
dynamics is Hamiltonian, governed by a variational prin-
ciple. This is the case of ideal MHD, for example [1]
Sect. 6.5.

Suppose the Lagrangian is Lðy; _y; tÞ, where y is re-
stricted to the modal representation Eq. (1). Rotational
invariance suggests taking the Lagrangian L, expressed
in terms of a, as

2L ¼ j _aj2 þ�jaj2 þ �jaj4; (6)

where � and � are real parameters. To carry out the
variation with y, it is convenient again to write a ¼
r expði�Þ, and treat r and � as independent variables.

The Lagrangian becomes

2L ¼ _r2 þ r2 _�2 þ�r2 þ �r4; (7)

whence the variational equations are

d

dt

�
@L

@ _r

�
� @L

@r
¼ €r� r _�2 ��r� 2�r3 ¼ 0; (8)

d

dt

�
@L

@ _�

�
� @L

@�
¼ d

dt
ðr2 _�Þ ¼ 0: (9)

Equation (9) implies _� ¼ C=r2, for Casimir constant C.
The reflectionally symmetric case C ¼ 0 is easy to under-
stand. It represents standing waves with amplitude obeying
the equation

€r ¼ �rþ 2�r3: (10)

Compared to Eq. (4), this admits quite different, oscillatory
dynamics because the time derivative has changed to sec-
ond order. Equation (10) is easiest to understand by con-
sidering motion in the potential corresponding to its first
integral, although its solution may also be given explicitly
in terms of Jacobi elliptic functions.

It seems reasonable to assume that initially r is small ¼
� at the onset of instability. For the case where �> 0, �<
0, r is then forced to grow slowly while its amplitude is
small. However, it will grow at an ever-increasing rate,

until the r3 term kicks in when r ¼ Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffið�=�Þp Þ and just as
rapidly returns it to a low level. In other words the system
will be generically bursty, with its solutions suddenly rising
up by a factor Oð1=�Þ.
Interaction with an axisymmetric mode, representing the

tokamak equilibrium configuration, will, in order to satisfy
equivariance, be via a term proportional to jaj2 ¼ r2.
Suppose the axisymmetric mode z is governed by dissipa-
tive dynamics, then the simplest bifurcation model is the
fold, which with the interaction term added, is

_z ¼ �� �z2 � r2: (11)

As Fig. 1 shows, the equilibrium mode exhibits saturated
cyclic behavior, the crashes corresponding to the bursts of
the nonaxisymmetric mode. The choice of coefficients is
reasonable in that when z is rescaled to be of order unity at
saturation, Eq. (11) takes the weakly coupled form
d	=dt ¼ 1� 	2 � �1r

2, with �1 ¼ Oð10�2Þ.
There is also a question concerning how finite dissipa-

tion affects these ideal models. However, there is good
evidence that oscillatory behavior persists at least at higher
amplitude, although small amplitude nonreversing oscilla-
tions may damp. The degenerate, symmetric Takens-
Bogdanov bifurcation, which includes terms representing
dissipation, contains Eq. (10) in its unfolding [[13]
Sect. 7.3], and exhibits oscillation.
The sawtooth mode is a possible candidate for identi-

fication with the Taylor cells since it is almost as ubiqui-
tous in tokamaks as the Taylor cell is in T-C flow, and both

FIG. 1. Time series plots of solutions to the system of Eq. (10)
coupled to Eq. (11). Parameters � ¼ 1, 2� ¼ �1, � ¼ 1, � ¼
0:001, initial values r ¼ 0:01 and z ¼ 0.
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are nontraveling waves. The fact that the sawtooth contin-
ues to oscillate in time is accounted for by the relative
smallness of dissipative effects in the tokamaks compared
to T-C flow. The tentative identification of ‘‘kinetic’’ tear-
ing modes with T-C traveling waves is natural because, as
well as possessing the same qualitative behavior, neither
normally occurs until there is already a different wave
pattern present.

Conclusions.—Using only relatively simple equivariant
bifurcation theory, this Letter has reproduced the principal
qualitative features of Ohmically heated tokamak dis-
charges, namely, (i) saturated traveling waves in a generic
dissipative model. (ii) Bursty and sawtoothing behavior in
a generic model with an ideal symmetry-breaking mode.

This has important theoretical ramifications, for ex-
ample (2) means that the fact that a physical model exhibits
bursty or sawtoothing behavior is no sure guarantee that it
fully explains sawteeth or ELMs: any model obeying the
symmetry constraints will exhibit such behavior, which is
generic to ideal axisymmetric models. On a more positive
note, however, these results support the contention that
ODEs of the types discussed can be used to fit to experi-
mental data using, say, methods from Ref. [14], whence
they should produce quantitative information regarding the
nonlinear terms. This information should be useful to
compare with physical theories and also possibly in the
devising of feedback control strategies to suppress mode
growth.

Further work needs to be pursued in parallel with any
application to experimental analysis. First, it is likely that
in key regions of operating space, two or possibly even
more different modes are simultaneously close to instabil-
ity. Hence, higher order, degenerate bifurcation theories of
the kind described in Ref. [8] need to be developed for
symmetric systems. Second, it would be sensible to look
systematically at the effect of introducing small amounts
of dissipation into the bursty model, to include small
symmetry-breaking terms [15] in order to investigate,
e.g., the effects of magnetic field control coils, and to
add small random terms [16] to model small-scale
turbulence.
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