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The nonlinear evolution of waves excited by the resonant interaction with energetic particles, just above

the instability threshold, is shown to depend on the type of relaxation process that restores the unstable

distribution function. When dynamical friction dominates over diffusion in the phase space region

surrounding the wave-particle resonance, an explosive evolution of the wave is found to be the only

solution. This is in contrast with the case of dominant diffusion when the wave may exhibit steady-state,

amplitude modulation, chaotic and explosive regimes near marginal stability. The experimentally

observed differences between Alfvénic instabilities driven by neutral beam injection and those driven

by ion-cyclotron resonance heating are interpreted.
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The study of driven kinetic systems, and their associated
complex nonlinear behavior, is not only of pure academic
interest but also has applications to magnetically confined
fusion plasmas. Waves excited by energetic particles have
the potential to eject energetic particles from the plasma
[1], which is undesirable. Such waves can also provide
information about the plasma conditions [2] which will be
necessary for the burning plasma environment that cannot
be accessed directly. The nonlinear temporal behavior of
individual waves is an essential element of systematic
analysis with predictive capability.

A general theory [3] has been developed for describing
the nonlinear evolution of a wave near the threshold sat-
isfying � � j�L � �dj � �d � �L where �L is the ener-
getic particle contribution to the wave growth rate (which
is assumed to be constant but can be extended to slowly
time varying without consequence [4]) and �d is the wave
damping rate due to dissipation in the bulk plasma. It was
theoretically shown in [3] that the mode evolution just
above the threshold reflects an interplay between the
wave electric field, that tends to flatten the distribution
function of energetic particles, and the relaxation pro-
cesses, which tend to restore the unstable distribution
function with a characteristic time scale 1=�eff . The re-
laxation process restoring the unstable distribution func-
tion was modeled in [3] via an ‘‘annihilation’’ (Krook [5])
collision operator that treats the effect of collisions as
��effðF� F0Þ, with F0 and F being the equilibrium and
perturbed distribution functions, respectively. Within this
model it was found that a steady-state solution does not
always establish itself near the threshold, and four main
regimes of the near-threshold nonlinear amplitude evolu-

tion have been predicted in [3] depending on the ratio of
�eff=�: (i) a steady-state regime; (ii) a regime with periodic
amplitude modulation; (iii) a chaotic regime, and (iv) an
‘‘explosive’’ regime. The case of velocity-space diffusion
was also investigated in [6] and produced very similar
nonlinear behavior to the Krook collisions.
The first three regimes have been identified in JET

experiments on Toroidal Alfvén Eigenmode (TAE) excita-
tion by ICRH (ion-cyclotron resonance heating) [4,7]. The
explosive regime leading to a strongly nonlinear phase was
identified in MAST experiments with TAEs driven by NBI
(neutral beam injection) [8]. Because of the strong non-
linearity that develops in the explosive scenario, the insta-
bility onMASTwas observed in the form of TAE ‘‘bursts’’,
representing a near-threshold type [9] of a general bursting
nonlinear scenario described in [10].
A comparison of the nonlinear TAE evolution [8] with

that on other machines has shown that there is a tendency
for NBI-driven Alfvénic instabilities to exhibit a bursting
behavior on NSTX [11], TFTR [12], DIII-D [13], and
JT-60U [14]. On the other hand, ICRH-driven modes in the
Alfvén frequency range, similar to those observed in [4,7],
show predominantly the first three types of mode evolution
on TFTR [15], JT-60U [16], DIII-D [17], and C-MOD [18].
Taking into account that the distribution function of NBI-
produced ions establishes itself due to electron dynamical
friction (also called drag and slowing down) [19], while the
distribution function of ICRH-accelerated ions [20] is
formed via a quasilinear diffusive process, a comparison
between dynamical friction and velocity-space diffusion
becomes an important issue for kinetic instabilities. In this
Letter we make such a comparison for a bump-on-tail
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instability and extend the results to toroidal systems with
the TAE instability.

In the aforementioned theory [3] the bump-on-tail
problem was solved kinetically, with a simplified colli-
sion operator, for the beam distribution function Fðx; v; tÞ
under the influence of an electrostatic field E ¼
1=2½ÊðtÞeiðkx�!tÞ þ c:c�, where ÊðtÞ is allowed to be com-
plex to permit nonlinear frequency shifting. Despite the
specifics of the idealized bump-on-tail model, the non-
linear behavior of this system is in fact universal [6] and
can be applied to electromagnetic waves in toroidal ge-
ometry, by transforming to appropriate variables.
Previously investigated fast particle relaxation mecha-
nisms included velocity-space diffusion [4,6] and annihi-
lation (Krook-type collisions) [3], which were found to
display similar properties; however, the effect of a drag
collision operator was not considered. The appropriate
collision operator for the problem is determined by what
collisional process is dominant at the wave-particle reso-
nance in phase space. For fast ions with velocities vf

satisfying vi � vf � ve where vi and ve are the back-

ground ion and electron thermal velocities, Coulomb col-
lisions can be described as a combination of pitch angle
scattering and electron drag [19,21]. The former can be
represented by a diffusive operator as investigated in [6],
while the latter introduces a slowing down operator to the
kinetic equation. With all three (diffusive, drag, and
Krook-type) collision operators included, the relevant ki-
netic equation for the bump-on-tail problem becomes
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where F0 is the equilibrium distribution function in the
absence of any wave field, u ¼ kv�! and �,�, and� are
constants characterizing the velocity-space diffusion, dy-
namical friction, and Krook operator, respectively, in the
narrow vicinity of the resonance. We represent F as a
Fourier series F ¼ F0 þ f0 þ

P1
n¼1½fn expðinc Þ þ c:c�

with slowly varying Fourier amplitudes fn and c ¼ kx�
!t. By assuming that any change in ÊðtÞ occurs on a slower
time scale than the wave frequency, the wave equation can
be written as
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Following Refs. [3,6] we expand the perturbed distribu-

tion function in powers of the wave amplitude Ê and we
use the ordering F0 � f1 � f0, f2 to truncate Eq. (1) at
the lowest order nonlinearity (cubic) to give
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Ê
@f�1
@u

� ek

2m
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Here, f2 has been neglected as it does not contribute to the
final expression [Eq. (4)] for the wave amplitude. The

actual expansion parameter is !B�, where !B �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eEk=m

p
is the bounce frequency of the resonant particles,

and � is the time scale of interest. As seen from the
resulting Eq. (4), the nonlinear correction to the wave
growth rate can be estimated as �Lð!b�Þ4 whereas the
linear growth rate itself is �L � �d � �L. The lowest
order nonlinearity becomes important when ð!b�Þ4 �
ð�L � �dÞ=�L � 1. At this level, the next-order nonlinear
term, �Lð!b�Þ8, is still negligible. Thus, the inequality
ð�L � �dÞ=�L � ð!b�Þ4 � 1 defines a window in which
the dynamics are already nonlinear but the nonlinearity can
still be treated perturbatively. By comparing the second
term in Eq. (3b) to the collision terms separately, resonance
widths can be constructed to characterise the role of vari-
ous collisions at the wave-particle resonance with �u� ¼
�, �u� ¼ � and �u� ¼ � for diffusive, drag and Krook

collisions, respectively. We solve Eq. (3) iteratively for f1
as in [3], and the equation for the evolution of the wave
amplitude takes the following form
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where A ¼ ½ekÊðtÞ=m=ð�l � �dÞ2�½�l=ð�l � �dÞ�1=2, � ¼
ð�l � �dÞt, �̂3¼�3=ð�l��dÞ3, �̂2 ¼ �2=ð�l � �dÞ2, �̂ ¼
�=ð�l � �dÞ and �l ¼ 2�2ðe2!=mk2Þ@F0ð!=kÞ=@v. The
case of no dynamical friction, �̂ ¼ 0, in Eq. (4) was
considered in [6]. The inclusion of a nonzero �̂ introduces
an oscillatory dependence to the integral, which has a
profound effect on the nonlinear behavior of the mode
amplitude, as the integral in Eq. (4) can then easily change
sign. Previously the nonlinear amplitude evolution was
divided into soft and hard nonlinear regimes. The ampli-
tude evolves to a low level in the soft case, reflecting the
closeness to the threshold, whereas the hard case leads to a
solution which ‘‘explodes’’ in a finite time.

For the case of pure drag (�̂ ¼ �̂ ¼ 0) the amplitude
does not saturate at a low level, since Eq. (4) does not admit
‘‘steady-state solutions’’ in the form A0 ¼ jA0j expðib�Þ as
� ! 1 for any value of �̂. Numerical simulations show
that the behavior is indeed explosive, similar to Ref. [3].
This is in contrast to the previously studied Krook operator
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and diffusive cases. By adding diffusion along with
drag, the existence of steady-state solutions of Eq. (4) is
then only prohibited when the integral in Eq. (4) has a
negative real part as � ! 1, in which case �̂=�̂ < 1:043
(Fig. 1 dotted line). However the steady solutions that do
exist become unstable for smaller values of �̂. By per-

turbing the steady-state solution A ¼ A0ð1þ �AÞ with
�A ¼ C expð��Þ þD expð���Þ, a stability boundary in �̂,
�̂ space can be calculated by solving the dispersion
relation in Eq. (5) for the case when Ref�g ¼ 0,
with PðzÞ ¼ z2 expð�2�̂3z3=3þ i�̂2z2Þ and jA0j�2 ¼
Re

R1
0 dzPðzÞ=ð2�̂3z2 � 2i�̂2zÞ. The resultant boundary is

displayed in Fig. 1 (solid line)
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For the bump-on-tail case, the F0 close to the resonance
is a straight line with constant gradient, Fig. 2 (dotted). For
the analysis presented here to be valid, the perturbation
from equilibriummust not be strong. For the diffusive case,
Fig. 2 (dashed) shows that there is a slight modification of
the distribution function, which flattens the slope close to
the resonance. This is consistent with a system driven to
saturation. As �̂ is increased, the flattened region increases
but the slope of F remains positive. However, by adding a
significant drag component to the collision term, Fig. 2
(solid) shows that large perturbations in the distribution are
formed. As �̂ increases, these perturbations in the distri-
bution function increase, which shows that the perturbative
approach of this analysis breaks down and indicates that
the system is being driven towards a hard nonlinear regime.

In order to generalize the results obtained above to the
TAE instability in toroidal geometry, one can follow the
procedure in [6] and introduce action-angle variables to
represent the wave-particle resonance condition as � �
!� nh!	i � lh!
i ¼ 0, where ! � !TAE is the TAE

frequency, h!	i � h@	=@ti and h!
i � h@
=@ti are the

orbit frequencies of energetic ions along the toroidal, 	,
and poloidal, 
 coordinates, h. . .i represents the orbit aver-
aging, n is toroidal mode number of the TAE, and l is an
integer value. For describing fast particles moving across
this resonance, due to the drag and diffusion, the Fokker-
Planck operator is represented in the form
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where P	 is the toroidal canonical momentum and

the derivatives @�=@P	 are taken at a constant value of

E� ð!=nÞP	 (E is energy). Considering TAEs driven by

strongly passing beam ions with the resonance condition

� � !� n
vk
R

� l
vk

RqðrÞ ¼ 0; (7)

FIG. 1 (color online). Displays the boundaries in parameter
space that give stable, unstable and no steady-state solutions to
Eq. (4). The unstable solution lies in between the solid and
dashed lines.

FIG. 2 (color online). Saturated distribution function for the
case of no wave (dotted line), pure diffusion with �̂ ¼ 10
(dashed line), and diffusionþ drag with �̂ ¼ 10 �̂ ¼ 8:9 (solid
line).
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where R is the major radius, r is the minor radius, q is the
safety factor and vk is the velocity parallel to the equilib-

rium magnetic field, one can estimate, from Eqs. (6) and
(3b), the width of the resonance due to diffusion ð��DiffÞ
and drag ð��DragÞ similar to�u� and�u�. The ratio of the

two gives an estimate for which process dominates at the
resonance
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and upon substituting the appropriate D and b [21], Eq. (8)
becomes
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where m is the poloidal mode number (of order unity),
mb is the mass of the beam species (deuterium in MAST),
r � 50 cm is the minor radius, B0�5 kG, Te�0:1–1 keV
is the electron temperature, EA � 10 keV is the resonant
Alfvénic energy, 
b � 0:6 rad, S � 10�2–10�1 is the

magnetic shear, ��E3=2
A m1=2

b =�Z2
be

4ne ln�
ffiffiffi
2

p �0:025s.
Using these MAST parameters the collisional diffusion
vs drag is calculated to be ��Diff=��Drag � 0:2–1:6,

demonstrating that drag can dominate over the collisional
diffusion in the vicinity of the TAE resonance.

From this one would expect that steady-state nonlinear
TAE behavior is hardly possible for the case of NBI-
produced slowing-down distribution functions, as is indeed
observed in the bursting TAE experiments with NBI. In
contrast, ICRH-accelerated ions have a distribution func-
tion for which the dominant relaxation process is a quasi-
linear diffusion due to the ICRH wave field. Here �eff due
to the wave exceeds the Coulomb collision frequency by an
order of magnitude [4]. With such strong diffusion domi-
nating over the drag, the marginally unstable TAEs are
expected to exhibit the set of four regimes [3], as is indeed
the case [4,7].

Finally, we note that for ITER relevant parameters
(Te � 10 keV, B0�50 kG, EA�1MeV, ne � 1014 cm�3,
r� 200 cm, 
b � 1), the alpha particle excited TAEs
are expected to be dominated by diffusion with
��Diff=��Drag � 1:4. Since drag is not negligibly small

its effect should still be included, as described in this paper
(Fig. 1), in any predictive ITER calculations. The relevance
of drag is further emphasized by noting the sensitivity of

this estimate to the electron temperature, more specifically

��Diff=��Drag scales as T
3=4
e .

In summary, the destabilizing effect of dynamical fric-
tion, leading to an explosive behavior, has been demon-
strated in this Letter in the framework of the near-threshold
nonlinear theory. A description of the mode evolution
beyond the early explosive phase, i.e., in the strongly
nonlinear regime, with the addition of dynamical friction
will be the subject of further study.
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