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We study the motion of a drop lying on a plate simultaneously submitted to horizontal and vertical

harmonic vibrations. The two driving vibrations are adjusted to the same frequency, and, according to

their relative amplitude and phase difference��, the drop experiences a controlled directed motion with a

tunable velocity. We present a simple model putting in evidence the underlying mechanism leading to this

ratchetlike motion of the drop. Our model includes the particular case �� ¼ � corresponding to the

climbing of a drop on a vertically vibrated inclined substrate, as recently observed by Brunet et al. [Phys.

Rev. Lett. 99, 144501 (2007)]. This study gives insights in the fundamental issue of wetting dynamics and

offers new possibilities of controlled motion in droplet microfluidics applications.
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Microfluidics has recently motivated both fundamental
and applied researches [1,2]. The challenge is to find an
optimal process to manipulate small liquid quantities,
down to the nanoliter scale, in order to study chemical
reactions, biological molecules, and processes or to per-
form biomedical tests in a rapid and repetitive way. Two
main ways have emerged in order to handle drops: two-
phase flows in microchannels [1–3] and sessile drop dis-
placement on surfaces [4–6]. For the latter, the existence of
a contact angle hysteresis prevents the motion of the drop.
Nevertheless, this difficulty can be overcome by using drop
oscillation modes induced by vibrations. More than a
century ago, Rayleigh [7] and Kelvin [8] found a general
expression for these modes due to surface tension, in the
case of free liquid drops. In the 1980s, microgravity experi-
ments have motivated studies on sessile drop oscillations
[9], and several works have then focused on the forced
vibrations of supported drops [10–12] for which the con-
tact line is fixed. A drop behaves like a spring with differ-
ent resonant frequencies at which a small vibration induces
a significant deformation. Locally, the contact angle can
become, respectively, higher or lower than the advancing
(�a) or receding (�r) contact angles, the critical values of
the wetting hysteresis inducing contact line motion.

Such a reduction of the effect of contact angle hysteresis
[13,14] to induce drop motion has been first illustrated by
Daniel and Chaudhury [15]. They performed experiments
on a drop deposited on a substrate with a continuous
wettability gradient and demonstrated that parallel vibra-
tions applied to the substrate helped the drop to move
toward its more wettable part. These authors with
de Gennes [16] also put in evidence the possibility to use
asymmetric horizontal vibrations to control the drop mo-
tion without any external force. Vertical vibrations have
also demonstrated their ability to overcome contact angle
hysteresis effects [17], allowing contact line motion but not
a net drop motion. It comes out that horizontal or vertical

symmetrical vibrations alone do not provide the ratchetlike
asymmetry necessary to induce a net drop displacement.
Brunet, Eggers, and Deegan [18] observed recently the
surprising climbing of a drop on a vibrated inclined plane.
This forced motion can be decomposed into parallel and
perpendicular vibrations of the substrate, as being a par-
ticular case of the present study with a phase difference
�� ¼ �.
In this Letter, we demonstrate that the combination of

horizontal and vertical vibrations induces an asymmetry
and a net drop motion. By simply tuning the phase differ-
ence between the two vibrations, a direction or another is
chosen at a given controlled velocity. We put in evidence
the unexpected rich relation between �� and the average
velocity of the drop V. We first describe the experimental
apparatus used to combine horizontal and vertical vibra-
tions in a way to reduce their possible coupling. The
method used to obtain the relation between the phase
difference and the drop velocity is then presented together
with the results obtained for different horizontal and ver-
tical vibrations. A simple analysis and a mechanical model
are finally proposed to explain how the combination of
vertically and horizontally excited modes leads to a net
motion of the drop and the fundamental role of the phase
difference ��.
The experimental apparatus depicted in Fig. 1 consists

of two independent vibration exciters. The vibrations
induce substrate motion in the horizontal (h) and verti-
cal (vÞ directions: ahðtÞ ¼ Ah cosð2�fhtÞ and avðtÞ ¼
Av cosð2�fvtþ��Þ. The main difficulty has consisted
in reducing the mechanical coupling between both vi-
brations. Our setup allowed us to minimize this coupling
to roughly 5%. The experiments are performed under a
laminar flow hood in order to reduce dust contamination
of the substrate. A water drop of radius 1.3 mm is de-
posited on a cross-linked polydimethylsiloxane substrate
(Sylgard 184). We measured a wetting angle of 96� and an
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hysteresis �a � �r � 19�. The drop has a first resonant
frequency at f0h ¼ 46 Hz corresponding to the ‘‘rocking

mode’’ associated to parallel vibration of the substrate.
This experimental value is in good agreement with the
semianalytical expression proposed recently [19] predict-
ing a resonance at 43 Hz. At f0v ¼ 96 Hz the second
resonant frequency corresponds to the ‘‘pumping mode’’
which is induced by perpendicular vibration of the surface.
Even if the pumping mode is somehow related to the n ¼ 2
Lamb’s mode, its value is different since the contact angle
value of the supported drop strongly influences its reso-
nance [9–12,17,20,21].

In most of our experiments fh ¼ fv ¼ f, with a value
just in between f0h and f0v that leads to the largest drop

motion. For lower or higher frequencies, only the rocking
or pumping modes are, respectively, excited and no motion
is observed. We used a high-speed camera (Photron
Ultima 512) to visualize the drop from the side, looking
at its deformation and its trajectory at a frame rate ranging
from 1000 to 8000 images per second. The pictures in
Fig. 1(b) represent the shapes of the drop at different
phases of its motion, recorded during 1 s with f ¼
70 Hz. The drop therefore experiences 70 cycles of oscil-

lations. Different phases are taken from different cycles to
make the overall displacement more visible. The average
velocity is 0:68 cm s�1, which corresponds to a displace-
ment of 8% of the drop radius during each vibration cycle.
The dotted line is a Lissajous curve representing the tra-
jectory of the small drop at rest on the side of the substrate.
This figure leads to the measurement of ��, Ah, and Av.
The ratchetlike motion of the drop is evidenced in Fig. 1(c)
representing the position of the triple line on the right
recorded during three periods.
Instead of making several measurements for each value

of the phase difference, we determine the relationship
between the drop velocity V and �� directly by applying
two slightly different frequencies fh ¼ f ¼ 70 Hz and
fv ¼ fþ �f. The phase is therefore time-dependent,
��ðtÞ ¼ 2��ft, and periodically takes all values between
0 and 2�. In Fig. 2, we represent the position of the center
of mass of the drop as a function of time for two values of
the frequency shift �f ¼ 1 and 2 Hz. As expected, since
the phase is varying, the drop experiences a periodic mo-
tion on the substrate. The amplitude of this motion de-
creases with the frequency shift. For each curve we have
extracted the drop velocity as a function of ��. This is
represented in inset in Fig. 2: The two data sets collapse on
the same curve, validating our measurement procedure.
In Fig. 3(a), we plot the velocity as a function of �� for

different values of Ah. The amplitude of vibration in the
perpendicular direction is fixed to Av ¼ 140 �m. As a
function of ��, the drop undergoes a motion to the right
(V > 0) or to the left (V < 0). We illustrate here that such
combined parallel and perpendicular vibrations allow one
to control of the motion of the drop. We verify that the
function Vð��Þ satisfies Vð��þ �Þ ¼ �Vð��Þ, small
deviations being due to the presence of defects on the
substrate. As expected, the velocity maximum V1 depends
on the amplitude of vibrations. We can also observe the
existence of a second relative maximum V2 in the Vð��Þ
curve. It is smaller than V1 but nevertheless clearly visible
whatever the value of Ah. For a weak vibration amplitude,
the velocity is zero except around both maxima V1 and V2.
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FIG. 2. Displacement of the droplet center of mass for two
different frequency shifts �f ¼ 1 and 2 Hz. Inset: Deducted
drop velocity as a function of ��. The two data sets fall on the
same curve.

FIG. 1. (a) Experimental setup used to combine vertical and
horizontal vibrations of the substrate. (b) Images taken from
different vibration cycles at various oscillation phases. Here
fv ¼ fh ¼ 70 Hz, � ¼ �=4 Av ¼ 140 �m, and Ah ¼
300 �m. (c) Position of the triple line on the right versus
time. The lines are a guide to the eyes to put in evidence the
stops of the triple line.
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In Fig. 3(b), we plot V as a function of Ah for �� ¼ 0 and
90�. Below a threshold in amplitude, the drop is at rest on
the substrate.

These observations can be understood by looking at the
effect of vibrations on the drop dynamics. Consider a drop
with a forced horizontal vibration. In that case, the drop
presents the rocking mode corresponding to a high value of
the contact angle �H on a side and a low value �L on the
other side. When �H > �a and �L < �r, the two sides of the
drop start to move in the same direction, inducing drop
motion in the direction of the force. When the oscillation
goes on, the drop moves back in the other direction so that
the net motion over one period is null. Nevertheless, if at
the same time a vertical vibration is imposed when the drop
is deformed by the rocking mode, the deformation is differ-
ent whether the vertical force is upward or downward. This
leads to different variations in the contact angle and non-
symmetric driving forces on the contact line between the
right and left phases of the rocking mode. Finally, the
motions to the left and to the right do not compensate
each other. At each cycle the drop is displaced by the
same amount in one direction, leading to a net motion.
Depending on the phase difference between the two
modes, the velocity will be positive, negative, or null. We
present a minimal model aiming at a better understanding
of the V versus�� relationship. As depicted in Fig. 4(a), a
mass m is attached to two vertical and two horizontal
springs of, respectively, stiffnesses m!2

v=2 and m!2
h=2.

The springs are attached to a box deposited on an horizon-
tal plane and submitted to vertical and horizontal vibra-
tions. We denote with x1 the position of the box in the
laboratory reference frame and x and y the mass coordi-
nates in the box reference frame. We can write the follow-

ing differential equations for x and y:

€xðtÞ ¼ �Ah!
2 cosð!tÞ �!2

hx� � _x; (1)

€yðtÞ ¼ �Av!
2 cosð!tþ��Þ �!2

vy� � _y: (2)

� is the dissipation coefficient associated to the mass
motion in the box, representing internal dissipation in the
fluid. The amplitudes Ah and Av are due to the plane
vibrations, and �� is the phase difference between these
two excitations. We assume a solid friction between the
box and the plane that gives rise to a large energy dissipa-
tion. Neglecting the box inertia, we can therefore write

_x 1ðtÞ ¼ �1ðx� xcÞ if x > xc; (3)

_x 1ðtÞ ¼ 0 if jxj< xc; (4)

_x 1ðtÞ ¼ �1ðxþ xcÞ if x <�xc: (5)

�1 is the mobility of the box, and xc is the displacement
threshold value above which the box starts to move. It
corresponds to a force through the spring stiffness !2

hxc.
Above this critical force in the x direction, the friction no
longer completely compensates the driving force. We as-
sume that xc ¼ aþ by, a being a constant related to the
load on the plane and by its modulation due to the vertical
mass displacement. This mechanical system is a simple
model of a drop shaken in the perpendicular and parallel
directions. The two springs model the rocking and pump-
ing modes of the drop. The solid friction mimics the effect
of the wetting angle hysteresis. A similar analogy [16] has
been successfully proposed, and later numerically solved
[22], to understand the motion of a drop under the action of
nonsymmetrical vibrations.

FIG. 4. (a) Mechanical model. (b) Position of the box as a
function of time. (c) Box velocity as a function of ��. (d) Box
velocity as a function of Ah.
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FIG. 3. (a) Droplet velocities as a function of the phase dif-
ference for various parallel vibration amplitudes Ah. In the inset,
for a weak parallel vibration Ah ¼ 130 �m the two maxima are
clearly visible. (b) Velocity as a function of the Ah.
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We numerically solve this set of differential equations
with the following parameters: !h ¼ 1, !v ¼ 2, ! ¼ 1:5,
� ¼ �1 ¼ a ¼ b ¼ 1, and Av ¼ 0:5, and we vary Ah be-
tween 1 and 1.5. As seen in Fig. 4(b), the box undergoes a
ratchetlike motion qualitatively similar to the one observed
experimentally. The box velocity is represented in Fig. 4(c)
as a function of �� and in Fig. 4(d) as a function of Ah.
The numerical results compare qualitatively well with the
experiments represented in Fig. 3: We recover the same
trend for Vð�Þ as well as for VðAhÞ. The asymmetry
required for a net motion is introduced through the relation
xc ¼ aþ by. For a real drop, a is linked to the contact
angle hysteresis, x to the lateral motion induced by the
rocking mode, and by to the modulation associated to the
pumping mode. The minimal assumptions used do not
allow one to observe a second maximum in the numerical
Vð�Þ, while it clearly appears in experiments. This unex-
pected behavior should be due to nonlinearities of the drop
oscillations and to a more complex force-velocity relation-
ship that are not taken into account in our model.

In [18], Brunet, Eggers, and Deegan have observed the
upward motion of a drop on an inclined substrate vertically
vibrated. Our present study provides a direct explanation
for their observations. Considering an inclined substrate
presenting an angle � with the horizontal plane, a drop is
deposited and static due to the contact angle hysteresis. A
vertical acceleration is induced on the substrate. By pro-
jecting it over the parallel and perpendicular directions of
the plane, this corresponds to our system with �� ¼ �,
tanð�Þ giving the ratio between our ‘‘horizontal’’ and ‘‘ver-
tical’’ vibration amplitudes. As can be seen on our curves,
Vð�Þ corresponds to a highly negative velocity and hence a
climbing drop. The difference is that the driving force has
to overcome gravity and that the drop is vibrated around an
already asymmetrical shape due to gravity, but this does
not change the qualitative analysis. Finally, we would like
to point out the connection between our study and the one
of Linke et al. [23] on the self-propelled motion of a
Leidenfrost droplet. In that case the motion is due to the
combined effects of the droplet pumping and to the asym-
metry substrate morphology presenting inclined slopes as
for Brunet, Eggers, and Deegan.

In summary, we have studied the effects of combined
horizontal and vertical vibrations on a sessile drop. By
varying the phase and relative amplitude between both
vibrations, a net motion of the drop is possible. The cor-
responding average velocities have been measured as a
function of �� and vibration amplitudes. At each vibra-
tion cycle, a drop advances as much as 10% of its radius,
leading to velocities of the order of 1 cm=s. This study
leads to a better understanding of drop dynamics under
vibrations and offers new possibilities to move them on a
substrate. This could find applications in the droplet-based
fluidics domain. Further studies are needed to understand

the appearance of a second maximum for Vð�Þ. We plan to
perform fluid dynamic simulations as recently done by
Dong, Chaudhury, and Chaudhury [24] to understand the
ratchet motion of a drop submitted to asymmetric vibra-
tions. These simulations should be useful to investigate the
effect of the contact line force-velocity relation as well as
nonlinearities in supported drop oscillations.
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