
Competition between Local Collisions and Collective Hydrodynamic Feedback Controls Traffic
Flows in Microfluidic Networks

M. Belloul,1 W. Engl,2 A. Colin,2 P. Panizza,1,* and A. Ajdari3

1IPR, UMR CNRS 6251, Campus Beaulieu, Université Rennes 1, 35042 Rennes, France
2LOF, CNRS-Rodia 5258, Université Bordeaux 1, 33608 Pessac, France
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By studying the repartition of monodisperse droplets at a simple T junction, we show that the traffic of

discrete fluid systems in microfluidic networks results from two competing mechanisms, whose signifi-

cance is driven by confinement. Traffic is dominated by collisions occurring at the junction for small

droplets and by collective hydrodynamic feedback for large ones. For each mechanism, we present simple

models in terms of the pertinent dimensionless parameters of the problem.
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When studying flows of dispersions in microfluidic net-
works, a central goal is to understand the mechanisms that
govern flow partitioning at the nodes. Known as ‘‘plasma
skimming’’ in blood microcirculation, this issue is funda-
mental for well functioning cardiovascular systems [1],
whereas in digital microfluidic devices it is essential for
the traffic flow control of droplets [2]. This problem is also
challenging in the field of nonlinear physics. For instance,
consider the simplest situation where a droplet train
reaches a T intersection and ask how the droplets divide
between the two outlets. When a droplet arrives at the
junction, it flows into the arm having the lowest hydro-
dynamic resistance. Since the presence of droplets in mi-
crochannels increases the resistance to flow, there is a
nonlinear collective feedback between successive droplets’
trajectories [3,4]. The outcome turns out to be a complex
nonlinear dynamical system, now drawing much interest as
it lays the foundations of promising applications for the
design of logical microfluidic devices [5–7].

In this Letter, we demonstrate the crucial role played by
confinement and dilution on the traffic of discrete fluid
elements in microfluidic networks. To address this issue,
we study the repartition of trains of monodisperse droplets
at a T junction. By systematically varying the asymmetry
of the junction, the dilution, and the confinement of the
droplets, we show that droplet traffic results from the
competition of two distinct physical mechanisms, gov-
erned by the confinement. Traffic is dominated by local
collisions, occurring at the junction for small droplets,
whereas it results from collective hydrodynamic feedback
(CHF) for large ones. For each regime, simple models,
yielding universal behaviors in terms of the relevant di-
mensionless numbers of the problem, are proposed and
tested in experiments. These models capture the main
features of the problem and provide a general picture of
traffic flows in microfluidic networks.

Experiments.—In our experiments (inset, Fig. 1), a pe-
riodic train of water-oil monodisperse droplets is produced

using a double cylindrical capillary module, consisting of a
calibrated syringe needle (diameter 510 �m or 230 �m)
centered in a tube (radius rc ¼ 750 �m). Using two sy-
ringe pumps (Harvard PHD 2000), millipore water (vis-
cosity �w ¼ 1 mPa s) and sunflower oil (fromMaurel Inc.,
France, viscosity �o ¼ 50 mPa s) are, respectively, in-
fused through and around the central needle, so that drop-
lets form at the tip of the needle with a constant rate of

production, f. By fine-tuning both Qw and Qf
o, the respec-

tive flow rates of water and oil, we control �, the droplet
volume. An additional infusion of oil performed down-
stream, at constant flow rate Qd

o, increases �, the distance
between two successive droplets while keeping their size
unchanged. The behavior of this train at a bifurcation is
studied by directing it towards a simple asymmetric T
junction whose outlets have different lengths, L2 >L1,
but the same cross sections and whose two extremities
are connected to the same air pressure Po. Images of the
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FIG. 1. � (�) and Ld (d), versus �. The dashed line corre-
sponds to the asymptotic model of [9]: � ¼ 2� 4�

3�þ2�
2 where

� ¼ �o

�w
. Inset: Schematic of the setup.
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flow at the junction are captured and recorded with a video
camera. We limit our studies to droplets having size r
smaller than rc so that they do not deform due to confine-
ment and do not break up at the junction [8]. The capillary
and Reynolds numbers at play in our experiments are,
respectively, of the order of 10�2 and 10�1.

Transport of droplets in a constant section tube.—
Understanding droplet flows in microfluidic networks first
requires the description of droplet transport in a simple
linear channel of constant section S. We prepare a train of
monodisperse droplets and systematically increase � (i.e.,
the dilution flux), while keeping � and f fixed. We mea-
sure the constant droplet velocity U and the pressure drop
�P for a tube of length L. To characterize the influence
of confinement on droplet flow, we systematically vary �
and discuss our results in terms of � ¼ r

rc
, a dimension-

less number characterizing droplet confinement. In all our

experiments, we observe that U ¼ �Q
S with Q ¼ Qw þ

Qf
o þQd

o and 1<�< 2, a dimensionless coefficient func-
tion of � (Fig. 1). For small values of �, the variation of �
with � is well described by the formula analytically de-
rived by Hetsroni, Haber, andWacholder [9] for an isolated
spherical droplet flowing in a cylindrical channel. The
droplets in this first experiment are therefore sufficiently
distant and small so that they do not interact directly with
each other and do not rub against the walls with a friction
that depends on the capillary number, as in the Bretherton
regime [10]. From the measurement of �P, we compute the
hydrodynamic resistance �ðL;�; �Þ ¼ �P

Q of the portion of

tube length L, filled with n ¼ L
� droplets of volume �. For

any value of �, we observe that �ðL;�; �Þ ¼ �oðLÞð1þ
Ld

� Þ where �o and Ld are, respectively, the hydrodynamic

resistance of the tube with no droplets and the character-
istic excess length added by each droplet to the tube in
terms of hydrodynamic resistance. The variations of Ld

reported in Fig. 1 reveal the existence of two distinct
regimes: Ld strongly increases with � above a critical value
of confinement, �c ’ 0:7, whereas its value is essentially
zero below �c.

Traffic at a T junction.—Let us now investigate and
demonstrate the direct influence of confinement on flow
partitioning at a simple T junction. We have previously
shown [3] the existence of a hydrodynamic transition
between a first regime where the droplets partition at the
junction between the two outlets and another so-called
filter regime where they all collect into the shortest one.
At low dilution, the droplets divide between the two out-
lets; for higher dilution, they all collect into the outlet
whose length is the shortest. The repartition-filter (R-F)
transition occurs for a well defined value of the dilution,
� ¼ �f. To elucidate the key role of confinement on the

mechanisms of droplet repartition at the junction, we now
perform a systematic study of the onset of this transition as

a function of � ¼ L2

L1
, the asymmetry ratio of the junction

and �. The inset of Fig. 2 displays �f versus �, for three

different values of�. For all values of �, �f is a decreasing

function of �, indicating that the asymmetry of the junc-
tion clearly favors the filter regime over droplet partition-
ing. The effect of confinement is however more complex to
understand, since all curves present two regimes: for � <
0:85, �f is nearly constant, whereas for � > 0:85 it

strongly increases with �. In what follows, we will dem-
onstrate that this general feature results from the competi-
tion between two physical mechanisms driven by the
confinement.
Discussion.—When a droplet arrives at the junction, it

follows the dominant stream and flows into the outlet
having the largest flow rate. At high dilution, it systemati-
cally goes into the shortest arm; this arm has the lowest
hydrodynamic resistance since no droplets are present in
any outlet. This is the filter regime obtained for � > �f.

However, for lower dilution, the droplets which flow into
the shortest sidearm may increase its hydrodynamic resist-
ance sufficiently so that it eventually overcomes that of the
other arm. If so, the next droplet reaching the junction goes
into the emptied longer arm: this is the repartition regime
observed for � < �f. Within this picture, the value of �f

corresponds to the situation where the hydrodynamic re-
sistance of the shortest arm filled with droplets becomes
equivalent to that of the longest outlet where no droplets
are present. Along these lines, a straightforward calcula-

tion predicts that �f ¼ 2Ld

��1 [3]. We test the validity of this

approach by plotting the master curve ð�� 1Þ�f versus �

and compare it to the experimental values of 2Ld (Fig. 2).
Excellent agreement is found when � > 0:85, indicating
that for large (i.e., confined) droplets, traffic at the junction
does result from CHF due to the presence of droplets in the
outlets. However, by contrast for unconfined droplets (i.e.,
for � < 0:75), a strong discrepancy is observed between
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FIG. 2. Plotted are the master curve �fð�� 1Þ [for � ¼ 1:14
(j), � ¼ 1:2 (d), and � ¼ 1:34 (m)] and 2Ld (e) versus �. R
(striped area) and F stand, respectively, for the repartition and
filter regimes. Inset: �f versus �.
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the prediction of the CHF model and our experimental
results. In this � region, the droplets cannot contribute to
collective hydrodynamic feedback since they do not add
significant hydrodynamic resistance to a tube through
which they flow (Fig. 1). We thus expect to obtain filtering
for all � values, whereas, surprisingly, we still observe
partitioning of the droplets over a large domain of dilution.
This raises two fundamental questions. What is the new
physical mechanism different from collective hydrody-
namic feedback that promotes the presence of droplets in
the longest outlet in this � region? Why is the role of
confinement so important for droplet traffic?

We gain insight into this new and unexpected mecha-
nism by observing the flow of small droplets at the junc-
tion. Surprisingly, we witness collisions between
successive droplets (Fig. 3).

We notice that a direct consequence of these collisions
occurring at the junction is the stabilization of the reparti-
tion regime over the filter one (small colliding droplets
always distribute in different outlets). To check whether the
R-F transition in the low � region results solely from these
collisions, we perform systematic observations of the flow
at the junction for different values of � and dilutions. We
progressively vary the dilution flux measured by � at fixed
drop size and f and measure the probabilities that a colli-
sion occurs at the junction (Pc) and that a droplet bifurcates
towards the longest outlet (P2).

Results reported in Fig. 4 show that collisions are ob-
served for values of � smaller than a critical value �c. For
� < 0:75, we note that �c ’ �f, a proof that partitioning in

this � region results from collisions. By contrast, for � >
0:8, collisions are only observed far from the R-F transi-

tion (�c � �f), a region not investigated in our previous

work [3].
To understand the promotion of collisions at a T junc-

tion, let us consider in the filter regime a droplet (k) of
radius rk reaching the stagnation point O of the junction
where the pressure is Po þ �P. It is submitted to a net
force, due to the pressure difference exerted on its two
hemispheres by the flows of the two outlets. This force can
be roughly approximated by F ¼ �½p1ðrkÞ � p2ðrkÞ�r2k,
with � and piðrkÞ being, respectively, a numerical coeffi-
cient and the pressure in outlet i at distance rk from O. In
the unconfined region, the pressure profiles in each outlet
are linear but have different slopes, related to the values of
the total flow rates in each arm. Within this picture, a direct
calculation leads to

F ¼ �r3k
8�o

�r4c

�� 1

�þ 1
Q: (1)

Under the action of this force, the droplet moves laterally
to the shortest sidearm with a velocity Vjunc, which at low

capillary and Reynolds numbers (and neglecting droplet
inertia) varies as Vjunc ¼ �ðrkÞF. �ðrkÞ is a mobility co-

efficient which depends on the droplet size rk. Its value can

be estimated by noting that in the limit � ! 1, Vjunc ¼
�ð�kÞ QS . When the (kþ 1) drop reaches O, a time 	k has

elapsed. The condition for a collision to occur between
these two droplets is given by 	k & tk, where the retention
time of droplet (k) at the junction, tk, is roughly tk ’
rk=Vjunc, and 	k is the time span between the productions

of the two droplets (k) and (kþ 1). The inset of Fig. 4
displays the distributions of times 	k and tk, measured for
� ¼ 0:6 and � ¼ 1:14. We note that (i) the distribution of

FIG. 3. Snapshots of successive droplets reaching the junction
in different hydrodynamic regimes. Top line: Repartition of
small droplets with collisions (� ¼ 1:14) [see movie1.avi in
the supplementary material, (a) in [11]]. Center and bottom
lines: Repartition of large droplets in the CHF regime with no
collisions (center line) and in the collision regime (bottom line)
(� ¼ 1:34) [see movie2.avi, (a) in [11], and movie3.avi, (c) in
[11]].
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FIG. 4. Shown are (P2) (closed symbols) and (Pc) (open
symbols) versus � for � ¼ 0:99 (circles) and � ¼ 0:75 (tri-
angles) and � ¼ 1:34. The equation of the continuous line

corresponds to the expression of P2 ¼ 1
�þ1

h
1� ð��1Þ�

2Ld

i
, pre-

dicted by the CHF theory [12]. The dashed lines are guide for
the eyes. Inset: Distributions of the production time, 	, and the
retention times, t, measured over 200 droplets for �1 ¼ 11:5 mm
and �2 ¼ 7 mm.
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times 	k peaks around its mean value 	 ¼ 1
f (our trains of

droplets are almost periodical), (ii) the distributions of the
retention times, tk, are narrow in the filter regime, whereas
they become much broader when collisions occur, and
(iii) the mean value t of the distribution tk decreases by
diluting the system (i.e., increasing �). Establishing a
complete description of the probability for collisions is a
great challenge since (1) the expression of the retention
time at the junction depends on the details of the collisions
between droplets and (2) the probability that two consecu-
tive droplets collide is very sensitive to fluctuations in 	k
and rk. However, in a first approximation, to derive an
analytical expression for the onset of the collision–no-
collision transition we can neglect fluctuations in tk and
in 	k [because of our observations (i) and (ii)]. By using
this mean field approach (i.e., replacing 	k with 	 and rk
with r), the retention time of droplet at the junction is given

in the filter regime by t ’ 	 �þ1
��1

r
� [a result consistent with

our experimental observation (iii)]. The criterion for colli-
sions to occur (t > 	) yields

� < �� ’ �þ 1

�� 1
�rc (2)

We validate this approach that neglects inertia effect (the
Weber numbers at play in our experiments are typically of

the order 10�2) by plotting �c

�� as a function of � (Fig. 5).

For small values of �, good agreement is found: both the
experimental � and � dependence of �c coincide with the
predictions of the model for �� within experimental errors.

Furthermore, the value found for �c

�� is very close to 1.

Despite its simplicity, our model captures the main features
of our experimental observations of the R-F transition
made for small droplets, whereas for large droplets, the
data are well supported by the CHF model. By extrapolat-
ing these two models to intermediate values of �, an
estimate for the crossover between both regimes can be

established, namely, �� ’ 2Ld

rcð�þ1Þ (see Fig. 5).
To conclude, confinement plays a key role in the traffic

flow of the discrete elements of fluids in microfluidic net-
works. Traffic at a bifurcation is regulated by two distinct
mechanisms: local collisions or collective hydrodynamic
feedback, whose significance is controlled by the droplet
confinement. For each mechanism, models are proposed in
terms of the various dimensionless parameters of the prob-
lem. Our models provide a general framework for traffic
flows in branched geometries. Our results elicit new op-
portunities for the design of digital microfluidic circuits
since the local topology and geometry of a junction (neck
or feature hindering droplet motion) are susceptible to
modifying the occurrence of collisions at the junction.
The conclusions drawn here should be relevant to other
systems such as blood microcirculation, respiration, or
more general traffic flows.
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FIG. 5. Shown are �c

�� (open symbols) and
�f

�� (filled symbols)
plotted as a function of �.� ¼ 1:14 (squares),� ¼ 1:2 (circles),
and � ¼ 1:34 (triangles). The dashed line is the best horizontal
fit of the data for small values of �. The short- and long-dashed
lines correspond, respectively, to the quantity 2Ld

ð�þ1Þ�rc computed

for � ¼ 1:2 and � ¼ 1:34. F, Rnc, and Rwc stand, respectively,
for the filter regime and the repartition regimes without and with
collisions. The grey area corresponds to the collision region.
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