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We formulate a phase-reduction method for a general class of noisy limit cycle oscillators and find that

the phase equation is parametrized by the ratio between time scales of the noise correlation and amplitude

relaxation of the limit cycle. The equation naturally includes previously proposed and mutually exclusive

phase equations as special cases. The validity of the theory is numerically confirmed. Using the method,

we reveal how noise and its correlation time affect limit cycle oscillations.
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Self-sustained oscillations are widely observed in physi-
cal, chemical, and biological systems [1–3]. The oscilla-
tions are often described as limit cycle oscillators. Since
limit cycle oscillators show rich and varied properties, they
have been extensively studied as a central issue of non-
linear science. The timing of limit cycle oscillation can be
described by a single phase variable. The phase-reduction
method is a powerful analytical tool to approximate high-
dimensional limit cycle dynamics as a closed equation for
only the single phase variable [1]. Based on the phase
description, studies have revealed fascinating properties
of limit cycle oscillators like response properties and their
collective dynamics [4–6].

While the theory of phase reduction has been developed
mainly for deterministic limit cycle oscillators, oscillators
in the real world are often exposed to noise. Sources of the
noise can be internal fluctuations, background noise, and
also input signals which have noiselike statistics [7]. Since
noisy limit cycle oscillators also show various nontrivial
properties, there have been many recent studies of them [8–
15]. While the phase-reduction method is among the most
useful ways to study the effects of noise on oscillators, two
mutually exclusive phase equations have been proposed for
a limit cycle oscillator driven by white Gaussian noise. The
first one is formally the same as the phase equation ob-
tained from deterministic oscillators and is in a sense a
limiting case of colored noise [8–13] while the second one
has an additional term being proportional to square of noise
strength and is the technically correct phase equation for
white noise [15].

Their relationship and which of them is the more appro-
priate description of noisy physical oscillators have not
been addressed in the literature. Rather, it was recently
pointed out that both of them fail to describe noisy oscil-
lations in some cases [16]. These facts must imply the

existence of a more appropriate phase equation, which
will be a starting point for future research of noisy oscil-
lations. In this Letter, we solve these problems by formu-
lating the stochastic phase reduction with careful
consideration of the relationship between the correlation
time of the noise and relaxation time of the amplitude of
the limit cycle.
Noise in the real world has a small but finite correlation

time [17]. When the correlation time is much smaller than
characteristic time scales of the noise-driven system, we
can use the white noise description by taking the limit
where the correlation time goes to zero. For limit cycle
oscillators, this condition might seem to mean that the
correlation time is much smaller than the period of oscil-
lation. However, limit cycle oscillators always have other
significant time scales, i.e., the rate of attraction of pertur-
bations to the limit cycle. These rates characterize stability
of the limit cycle against amplitude perturbation. When the
limit cycle is very stable to perturbations, the decay time
constant could be as small as the short correlation time of
the noise. Since interplay of small time constants can play
a crucial role in stochastic dynamical systems, we should
carefully consider their relationship when we take the
white noise limit for noisy limit cycle oscillators. We
employ an Ornstein-Uhlenbeck process which explicitly
has a finite time correlation and then take the white noise
limit of the process while at the same time keeping track of
the time constant for attraction to the limit cycle.
Let us consider a smooth limit cycle oscillator driven by

the Ornstein-Uhlenbeck process with the time constant ��,

_X ¼ FðXÞ þ �GðXÞ�ðtÞ �� _� ¼ ��þ �ðtÞ; (1)

where XðtÞ 2 RN is the state of the oscillator at time t,
FðXÞ is its intrinsic dynamics, GðXÞ is a vector function,
�ðtÞ is the zero mean white Gaussian noise of unit intensity,
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h�ðtÞi ¼ 0 and h�ðtÞ�ðsÞi ¼ �ðt� sÞ, and then �ðtÞ repre-
sents the zero mean Ornstein-Uhlenbeck process with cor-
relation time ��, h�ðtÞ�ðsÞi ¼ expð�jt� sj=��Þ=ð2��Þ.
As we take the limit �� ! 0, �ðtÞ approaches the white

Gaussian process of unit strength. � represents noise
strength. FðXÞ has a stable limit cycle solution X0ðtÞ
satisfying _X0 ¼ FðX0Þ with period T, X0ðtþ TÞ ¼ X0ðtÞ.
The phase variable � is defined around the limit cycle
solution and increases by T for every cycle of XðtÞ along
the limit cycle. Thus, intrinsic angular velocity of the phase
is equal to one. We introduce the other N � 1 dimensional
coordinates � ¼ ð�1; �2; . . .Þ to describe the N dimen-
sional dynamics of X using the coordinate (�, �) [15].
Without loss of generality, we can shift the origin of � to
� ¼ 0 on the limit cycle solution. For simplicity of the
analysis, we assume that N ¼ 2. Generalization of results
to any values of N is straightforward. We now introduce
new variable yðtÞ ¼ �ðtÞ ffiffiffiffiffiffi

��
p

. Unlike �, y has the steady

distribution, P0ðyÞ ¼ expð�y2Þ= ffiffiffiffi
�

p
, which is independent

of the correlation time ��. Variable translations from X to

(�, �) and from � to y give

_� ¼ 1þ �hð�;�Þ yffiffiffiffiffiffi
��

p

_� ¼ 1

��ð�Þ fð�;�Þ þ �gð�;�Þ yffiffiffiffiffiffi
��

p

_y ¼ � y

��
þ �ðtÞffiffiffiffiffiffi

��
p :

(2)

The functions h, f, and g are defined as hð�;�Þ ¼ rX� �
GðXÞjX¼Xð�;�Þ, fð�;�Þ=�� ¼ rX� � FðXÞjX¼Xð�;�Þ, and

gð�;�Þ ¼ rX� �GðXÞjX¼Xð�;�Þ [15]. Since the limit cycle

at � ¼ 0 is stable, we explicitly introduced amplitude-
relaxation time of the limit cycle as ��, which generally

depends on � and assumed that fð�; 0Þ ¼ 0 and
@fð�; 0Þ=@� ¼ �1. The value of �� can be very small if

the limit cycle is stiff against amplitude perturbations.
To eliminate the amplitude variable � and perform the

phase reduction, we assume that the limit cycle is suffi-
ciently stable and take the limit �� ! 0. Simultaneously,

we have to take the white noise limit �� ! 0. To consider

these two limits at the same time, we take both limits �� !
0 and �� ! 0 simultaneously keeping the ratio k ¼ ��=��
constant. Introducing a small parameter 	 ¼ ffiffiffiffiffiffi

��
p

, we

translate the variable � to r ¼ �=	, which remains Oð1Þ
as 	 ! 0. Expanding h, f, and g as hð�; 	rÞ ¼ h0ð�Þ þ
h1ð�Þ	rþ h2ð�Þ	2r2 þ . . . , fð�; 	rÞ ¼ �	rþ
f2ð�Þ	2r2 þ f3ð�Þ	3r3 þ . . . , and gð�; 	rÞ ¼ g0ð�Þ þ
g1ð�Þ	rþ g2ð�Þ	2r2 þ . . . , we obtain the Fokker-
Planck equation [18,19] for the distribution function
Qð�; r; y; tÞ from the stochastic differential equation,
Eq. (2) as

	2
@Q

@t
¼ ðL0 � 	L1 � 	2L2ÞQþOð	3Þ; (3)

where linear operators are defined as L0Q ¼ ðyQÞy þ
Qyy=2þ kðrQÞr � �yg0Qr, L1Q ¼ �y½g1ðrQÞr þ
ðh0QÞ�� þ kf2ðr2QÞr, and L2Q ¼ �y½g2ðr2QÞr þ
rðh1QÞ�� þQ� þ kf3ðr3QÞr. Subscript x means partial

derivative with respect to the variable x. We assume
that Q vanishes rapidly as y ! �1 or r ! �1. Ex-
panding Q in a perturbation series in 	, Q ¼ Q0 þ 	Q1 þ
	2Q2 þ . . . , and equating coefficients of equal power of 	
in Eq. (3), we obtain

	0: L0Q0 ¼ 0 (4)

	1: L0Q1 ¼ L1Q0 (5)

	2: L0Q2 ¼ @

@t
Q0 þ L2Q0 þ L1Q1: (6)

The lowest order equation, Eq. (4), has a solution,

Q0 ¼ Pð�; tÞWð�; r; yÞ, where Wð�; r; yÞ ¼ ffiffiffi
k

p ð1þ
kÞ=ð�g0�Þ expf�y2 � k½y� ð1þ kÞr=ð�g0Þ�2g is the
steady Gaussian distribution function of r and y with
frozen � and gð�; rÞ ¼ g0ð�Þ. Pð�; tÞ is the distribution
function of the �. Our primary goal is to find the evolution
equation for P, which is nothing but the reduced Fokker-
Planck equation for the phase variable � [18,19].
Since the linear operator L0 has a zero eigenvalue,

Eq. (5) and (6) have to fulfill a solvability condition known
as the Fredholm alternative. That is, L0U ¼ b has a solu-
tion if and only if b is orthogonal to the nullspace of the
adjoint of L0. This nullspace is simply the constant func-
tion 1. Thus, we can solve L0U ¼ b when the integral of b
over (r, y) vanishes. To obtain this condition, we integrate
both sides of these equations with respect to both r and y
from�1 to1. We will see that the condition for Eq. (6) is
nothing but the desired Fokker-Planck equation for �.
Equation (5) is solvable since integration over (r, y) is
zero. To see why, note that integration of the term ðrQ0Þr
with respect to r vanishes since rQ0ðr; yÞ vanishes as jrj !
1. Integration of yQ0ðy; rÞ first with respect to r yields an
odd function of y which is absolutely integrable, and thus
its integral over y vanishes. We do not need the full
expression for Q1 at this point, so defer its calculation to
the next step. Integration of Eq. (6) gives

0 ¼ Pt þ �

�
h0

Z 1

�1

Z 1

�1
ðyQ1Þdrdyþ �g0

2ð1þ kÞ h1P
�
�

þ P�; (7)

where we used the rapidly vanishing assumption ofQ. The
coefficient of the third term comes from the relation-
ship

R1
�1

R1
�1ðyrWÞdrdy ¼ �g0=½2ð1þ kÞ�, which is

the correlation between y and r for fixed �. To evalu-
ate

R1
�1

R1
�1ðyQ1Þdrdy of the second term, we integrate

Eq. (5) with respect to r from �1 to 1 and obtain
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�
y
Z 1

�1
Q1dr

�
y
þ 1

2

�Z 1

�1
Q1dr

�
yy

¼ �ðh0PÞ�ffiffiffiffi
�

p ye�y2 :

(8)

Since Eq. (8) is a differential equation for
R1
�1 Q1dr with

respect to y, we obtain
R1
�1 Q1dr ¼ ��ðh0PÞ�ye�y2=

ffiffiffiffi
�

p
by solving this equation. Then, we find that

Z 1

�1

Z 1

�1
ðyQ1Þdrdy ¼ ��

2
ðh0PÞ�: (9)

Substituting Eq. (9) into Eq. (7) gives the partial differen-
tial equation for P as,

0 ¼ ðPt þ P�Þ � �2

2

�
½h0ðh0PÞ��� � 1

1þ k
ðh1g0PÞ�

�
;

(10)

which is just the Fokker-Planck equation for the phase
variable. Finally, we obtain the phase equation as the Ito
stochastic differential equation equivalent to the Fokker-
Planck equation as

_� ¼ 1þ �2

2
Z�ð�ÞZð�Þ þ 1

1þ kð�Þ�
2Yð�Þ

þ �Zð�Þ�ðtÞ; (11)

where we introduce Zð�Þ ¼ h0ð�Þ ¼ hð�; 0Þ and Yð�Þ ¼
h1ð�Þg0ð�Þ=2 ¼ hrð�; 0Þgð�; 0Þ=2. This is also equiva-
lent to the stochastic differential equation

_� ¼ 1þ 1

1þ kð�Þ�
2Yð�Þ þ �Zð�Þ�ðtÞ; (12)

in the Stratonovich interpretation.
We now examine the consequence of the above result.

The obtained phase equation is explicitly parametrized by
the ratio between time constants, k ¼ ��=��. When the

correlation time of the noise is much smaller than the decay
time constant, we can assume k ¼ 0 and Eq. (12) is re-

duced to _� ¼ 1þ �2Yð�Þ þ �Zð�Þ�ðtÞ, which is just the
phase equation proposed by Yoshimura and Arai [15]. This
implies that when noise is white Gaussian noise in the strict
sense, the second term Yð�Þ must be included in the phase
equation. On the other hand, when the amplitude of the
limit cycle decays much faster than the correlation time of
the noise, or the limit cycle is sufficiently stable against
amplitude perturbations, we can assume that k ¼ 1 and

the second term vanishes. Thus, Eq. (12) is reduced to _� ¼
1þ �Zð�Þ�ðtÞ, which is the same as the equation used in
[8–13]. The latter equation is directly obtained if we apply
the standard phase-reduction method to _X ¼ FðXÞ þ
�GðXÞ�ðtÞ without concern for stochastic nature of the
perturbation [1]. Thus, the above result ensures that we can
formally use the standard phase reduction in these cases.
While Eq. (12) agrees with previously proposed equations
at opposite limits of the parameter k, it deviates from both
of them in the middle range of k. Therefore, we can
conclude that in order to properly describe stochastic phase

dynamics for a general value of k, we must consider the
coefficient of the second term correctly as 1=ð1þ kÞ in the
phase equation.
To see the effect of the weight 1=ð1þ kÞ, we will

calculate the steady distribution function for the phase.
Requiring the steady condition Pt ¼ 0 to Eq. (10), we
obtain the steady distribution as

P0ð�Þ ¼ 1

T

�
1þ �2

�
Z�ð�ÞZð�Þ

2
� Yð�Þ

1þ kð�Þ þ�0

��

þOð�4Þ; (13)

where we used power series expansion of the distribution
in terms of �2. �0 is defined as �0 ¼ T�1

R
T
0 Yð�Þ=½1þ

kð�Þ�d�. As we increase noise strength � from zero, the
phase distribution starts to deviate from 1=T of nonper-
turbed oscillators. While magnitude of the deviation is a
function of �, actual shape of this depends on the ratio
kð�Þ.
Using the steady distribution, we can calculate the mean

frequency of the noisy oscillator defined as � ¼
limt!1t�1

R
t
0
_�ðtÞdt. Replacing the long term average

with the ensemble average, i.e., � ¼ R
T
0

_�P0ð�Þd�, and

substituting the Ito equation Eq. (11) into _�, we have

� ¼ 1þ �2�0 þOð�2Þ; (14)

where we used the fact that�ðtÞ is independent from �ðtÞ in
the Ito equation. As pointed out in the previous study [15],
the mean frequency depends on the noise strength. In
addition to the strength, our result reveals that the fre-
quency also depends on �� and �� through the ratio k.

As we change these values, the mean frequency will in-
creases or decreases depending on the sign of �0.
In order to validate the above analysis, we numerically

examine stochastic phase dynamics and calculate P0 and�
directly from the stochastic differential Eq. (1). As a simple
example, we use the Stuart-Landau (SL) oscillator, X ¼
ðx; yÞ, FðXÞ ¼ ð<½ZðWÞ�;=½ZðWÞ�Þ, where W ¼ xþ iy
and ZðWÞ¼ ½
ð1þ icÞþ i!�W�
ð1þ icÞjWj2W, which
is rescaled such that amplitude-relaxation time will explic-
itly appear. We define phase and amplitude coordinates (�,

r) as � ¼ ½arctanðy=xÞ � c logðx2 þ y2Þ=2�=! and r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p � 1. The limit cycle solution x2 þ y2 ¼ 1 is
given as r ¼ 0 in the coordinate. The decay time constant
to the limit cycle solution is �� ¼ 1=ð2
Þ. Figure 1 shows

steady-state distributions of the phase for various values of
time constants �� and ��. As expected, the distribution

changes as a function of time constants. Distributions,
however, are the same as far as the ratio between them is
the same. Numerical results are well fitted by the analytical
result, Eq. (13). Figure 2 shows the mean frequency� as a
function of �� and ��. As indicated by the above analysis,

� increases as a function of �� and decreases as a function

of ��. Theoretical predictions, Eq. (14), agree fairly well

with the numerical results.
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The above results clearly indicate that, when we elimi-
nate fast variables in stochastic dynamical systems, char-
acteristic time scales of the fast variables should be
seriously considered even though variables themselves
are eventually eliminated. In particular, white Gaussian
noise is actually an idealization of physical processes
with small but finite time correlation. Interactions between
small time scales can give crucial effects to stochastic
dynamics. Thus, similar situations may also arise even
when we use reduction methods other than the phase
reduction to stochastic phenomena [20]. Actually, a similar
situation arises in the analysis of classical Brownian mo-
tion with inertia [21]. The above results also tell us that
dynamical systems driven by the white-Gaussian noise are
derived through reduction methods not only from literally
white-noise-driven systems but also from systems driven
by realistic noise with finite time correlations. The non-
agreement between previously proposed phase equations is
due to this ambiguity. Our results ensure that we can
choose the most suitable reduced equation as far as we
explicitly indicate time scales of the noise and dynamical
systems.

In summary, we have formulated stochastic phase re-
duction for a general class of smooth limit cycle oscilla-
tors. The derived stochastic phase equation is parametrized
by the ratio between the correlation time of the noise and
the decay time of amplitude perturbations. Whereas pre-

viously proposed phase equations are realized only at
opposite limits of the ratio, the obtained phase equation
is valid in the whole range of values of the ratio. We have
calculated steady phase distributions and the mean fre-
quency of the noisy oscillator and revealed their depen-
dence on the time scales. The results suggest significance
of fast time scales in reduction methods of stochastic
phenomena.
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FIG. 2 (color online). Mean frequency � of Stuart-Landau
oscillators driven by Ornstein-Uhlenbeck processes when G ¼
ðx; 0Þ, � ¼ 0:3, ! ¼ 1, and c ¼ 1. Solid lines are theoretical
predictions, Eq. (14). (a) �� ¼ 0:01. (b) �� ¼ 0:01.

π
φ

φ

φ
π

FIG. 1 (color online). Steady distribution function of Stuart-
Landau oscillators driven by Ornstein-Uhlenbeck processes
when G ¼ ð1; 0Þ, � ¼ 0:3, � ¼ 1, and c ¼ 0:1. Symbols are
numerical results and solid lines are theoretical predictions,
Eq. (13). Dotted and dashed lines are Eq. (13) with k ¼ 0 and
k ¼ 1, respectively. (a) ð��; ��Þ ¼ ð0:2; 0:1Þ (triangles), (0.1,

0.1) (circles), and (0.1, 0.2) (squares). (b) ð��; ��Þ ¼ ð0:2; 0:2Þ
(triangles), (0.1, 0.1) (circles), and (0.05, 0.05) (squares).
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