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We study a simple quantum mechanical model of a spinning particle moving on a sphere in the presence

of a magnetic field. The system has two ground states. As the magnetic field is varied, the ground states

mix through a non-Abelian Berry phase. We show that this Berry phase is the path ordered exponential of

the smooth SUð2Þ ’t Hooft–Polyakov monopole. We further show that, by adjusting a potential on the

sphere, the monopole becomes a Bogomol’nyi-Prasad-Sommerfield monopole and obeys the

Bogomol’nyi equations.
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Introduction.—In 1974, ’t Hooft and Polyakov discov-
ered a new solution of Yang-Mills-Higgs theories [1,2].
From afar, it looks like a Dirac magnetic monopole.
However, the configuration is smooth, with the singularity
at the origin of the Dirac monopole resolved by the non-
Abelian gauge fields.

The spatial profile of the ’t Hooft–Polyakov field con-
figuration depends on the scalar potential for the adjoint-
valued Higgs field �. Among these, one profile is rather
special. This occurs when the potential vanishes and, as
first shown by Prasad and Sommerfield [3], it is possible to
find an exact solution. Later, Bogomol’nyi [4] showed that
the non-Abelian field strength, F ��, for this configuration

solves the simple, first order, differential equations

F �� ¼ ����D��; (1)

where F �� ¼ @�A� � @�A� þ ½A�;A�� and

D�� ¼ @��þ ½A�; ��. Monopoles of this type are

known as BPS, after the three authors named above. The
subsequent discovery that these monopole play a special
role in supersymmetric theories [5] has resulted in the title
‘‘BPS’’ being ascribed to almost anything associated to
supersymmetry.

There is another, more abstract, situation in theoretical
physics where the Dirac monopole arises. This is the Berry
phase in quantum mechanics. Consider a spin 1=2 particle

in a magnetic field ~B. The Hamiltonian is given by

H ¼ � ~B � ~�� j ~Bj12; (2)

where ~� are the Pauli matrices and 12 is the unit 2� 2
matrix, whose presence in the Hamiltonian simply ensures
that the ground state energy of this two-state system is
normalized to zero. We start in this ground state, j0i. We

then slowly rotate the magnetic field ~B until, finally, we
return to our initial setup. The adiabatic theorem in quan-
tum mechanics tells us that the system remains in the

ground state and changes only by a phase. The question
is, what is this phase? Since we have normalized the
vacuum to zero energy, there is no dynamical contribution.
Nonetheless, Berry showed that there is a geometrical
phase which depends on the path � taken in the space of
magnetic fields [6,7],

j0i ! exp

�
�i

I
�

~A � d ~B

�
j0i: (3)

The Abelian Berry connection ~A is defined in terms of the

dependence of the ground state on the magnetic field ~B,

~A ¼ ih0j @

@ ~B
j0i: (4)

Berry showed that, for the simple Hamiltonian (2), the
connection (4) is that of the Dirac magnetic monopole:
~A ¼ ~ADirac

. One can form a Uð1Þ field strength from the

Berry connection in the usual way F�� ¼ @A�

@B�
� @A�

@B�
. This

takes the radial, Dirac monopole form

F�� ¼ ����

B�

B3
: (5)

Note that there is a potential for confusion here, because
����F�� is an abstract magnetic monopole over the space

of real magnetic fields ~B. The field strength F�� has a

singularity at the origin. This is nothing to be afraid of: it
simply reflects the fact that the excited state and the ground

state become degenerate at ~B ¼ 0. Indeed, the very exis-
tence of the Berry phase can be traced to this degenerate
point in parameter space.
In this Letter, we ask whether the smooth non-Abelian

’t Hooft–Polyakov monopole can appear as a Berry con-
nection in simple quantum mechanical systems. The an-
swer, as we shall see, is yes. The concept of the non-
Abelian Berry connection was introduced by Wilczek
and Zee [8]. This occurs if a system has degenerate eigen-
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states for all values of the parameters ~B. If there are N
degenerate states jai, a ¼ 1; . . . ; N, then after a cyclic and
adiabatic tour through the space of parameters, the system
will undergo a UðNÞ rotation,

jai ! P exp

�
�i

I
�

~Aab � d ~B

�
jbi; (6)

where the uðNÞ valued Berry connection is defined by

~A ab ¼ ihbj @

@ ~B
jai: (7)

To build an SUð2Þ ’t Hooft–Polyakov monopole as a Berry
connection, we need to construct a Hamiltonian with two

degenerate ground states for all values of the parameters ~B.
Moreover, since the ’t Hooft–Polyakov monopole is
smooth, our system should generate a topologically non-
trivial Berry connection without any further degeneracies
occurring in parameter space. (Non-Abelian monopoles
have arisen previously in the context of Berry phases
[9,10]. However, in both of these papers the configuration
is not smooth, with a singularity at the origin resulting from
an extra degeneracy of states.)

In this Letter, we show that these conditions arise for a
spin 1=2 particle moving on a sphere S2 in the presence of a

magnetic field ~B. As ~B is varied, the mixing (6) between
the ground states is governed by a ’t Hooft–Polyakov
monopole. Moreover, we show that by including a poten-
tial over S2, the monopole takes the BPS form, and the
SUð2Þ Berry connection satisfies the Bogomol’nyi equa-
tion (1).

Quantum mechanics and monopoles.—In this section we
introduce two simple quantum mechanical systems with
degenerate ground states. Both of these have a non-Abelian
SUð2Þ Berry phase described by a ’t Hooft–Polyakov
monopole. For the first, we have only an implicit descrip-
tion of the profile of the monopole. However, a small
modification of this system allows us to solve for the
Berry phase exactly and we find the BPS monopole sat-
isfying (1).

Consider a neutral, spin 1=2 particle moving on a sphere
S2 in the presence of a magnetic field. We introduce the
usual polar coordinates � 2 ½0; �Þ and � 2 ½0; 2�Þ on the
sphere. The magnetic field varies over the sphere and is

given by ~B cos� where ~B is a constant vector. The
Hamiltonian is

H ¼ � @
2

2m
�12 � @ ~B � ~� cos�: (8)

The operator � is the Laplacian on the unit S2

� ¼ 1

sin�

@

@�

�
sin�

@

@�

�
þ 1

sin2�

@2

@�2
: (9)

The coordinate � is cyclic. This ensures that the ground
states of the system do not depend on �.

The Hamiltonian enjoys a Z2 symmetry,

~B ! � ~B; � ! �� �: (10)

The sign flip of the magnetic field acts on the Hilbert space
by exchanging spin-up and spin-down states, j"i and j#i,
defined to be the two normalized eigenvectors of ~B � ~�
with eigenvalues þjBj and �jBj, respectively.
The Z2 symmetry guarantees the existence of two

ground states for all values of ~B. For ~B � 0, the spin-up
state is localized near � ¼ 0, while the spin-down state is

localized near � ¼ �. When ~B ¼ 0, both ground states are
smeared uniformly over the sphere. However, in contrast to
the Hamiltonian (2), there is no extra degeneracy of the

ground states when ~B ¼ 0. For arbitrary values of ~B, the
two, normalized, ground states are a combination of the
spin states and a spatial wave function, c ðcos�;BÞ, which
depends on the magnitude B ¼ j ~Bj,

j1i ¼ c ðcos�;BÞj"i; j2i ¼ c ð� cos�;BÞj#i: (11)

Writing x ¼ cos�, the spatial wave function c ðx;BÞ sat-
isfies the Schrödinger equation,

� @
2

2m
ð1� x2Þc 00 þ @

2

2m
xc 0 � @Bxc ¼ E0c ; (12)

with c 0 ¼ dc =dx, and E0 the ground state energy.
We now compute the Berry phase for this quantum

mechanical system. The system is prepared in one of the

ground states before the magnetic field ~B is adiabatically
varied, traversing a closed loop in parameter space. At the
end of this tour, the ground state has undergone a Uð2Þ
rotation, defined, as in (6), by the path ordered exponential
of the Berry connection,

~A ab ¼ ihbj @

@ ~B
jai; a; b ¼ 1; 2: (13)

To build some intuition, let us start with the diagonal
components of the connection. Consider a large magnetic
field B � @=m, which localizes the spatial part of each
wave function close to a pole, at � ¼ 0 or � ¼ �. Here the
ground state knows little about the rest of the sphere and
sees an effective Hamiltonian of the form (2). This gives
rise to a Uð1Þ Berry connection which is equal to that of a

Dirac monopole, ~ADirac
. In fact, a simple computation

reveals that the diagonal components are independent of
the spatial wave functions for all values of B, and are given
by

~A11 ¼ h1j @

@ ~B
j1i ¼ h"j @

@ ~B
j"i ¼ ~ADirac;

~A22 ¼ h2j @

@ ~B
j2i ¼ h#j @

@ ~B
j#i ¼ � ~ADirac:

(14)

In contrast, the off-diagonal terms describe the tunneling
between the two different spin states, and depend on the
spatial wave function of the particle c . They are
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~A21 ¼ h2j @

@ ~B
j1i ¼ fðBÞh#j @

@ ~B
j"i;

~A12 ¼ h1j @

@ ~B
j2i ¼ fðBÞh"j @

@ ~B
j#i;

(15)

where the function fðBÞ is the overlap,

fðBÞ ¼ 2�
Z �

0
sin�d�c �ð� cos�;BÞc ðcos�;BÞ: (16)

Without specific knowledge of the ground state wave func-
tion c , we are unable to compute explicitly the profile fðBÞ
of the non-Abelian Berry monopole. However, on general
grounds, we know that fðBÞ ! 0 as B ! 1 since the two
spatial wave functions are localized at antipodal points on
the sphere. In the opposite limit, B ¼ 0, the two spatial
wave functions coincide and fð0Þ ¼ 1.

The Dirac monopole connection ~ADirac
necessarily con-

tains a singularity along a half-line, known as the Dirac
string. In the present context, this arises because it is not
possible to globally define a basis of spin states j"i and j#i
for all values of ~B. Therefore any explicit computation of

the components of ~Aab, using the basis shown in (14) and
(15), necessarily suffers from the Dirac string. However,
there does exist a gauge in which the non-Abelian connec-
tion A is free from the Dirac string. To demonstrate this,

one must first choose a ~B dependent basis for j"i and j#i,
then rotate ~A using a suitable singular gauge transforma-
tion [10,11]. The result is the non-Abelian Berry connec-
tion which takes the rotationally covariant form,

A� ¼ ����

B��
�

2B2
½1� fðBÞ�: (17)

This is the connection of a ’t Hooft–Polyakov monopole.
Note, first, that it is an suð2Þ connection, rather than uð2Þ.
Moreover, and most importantly, the asymptotic behavior
of fðBÞ described above guarantees that, as B ! 1, it
reduces to the Dirac monopole for a Uð1Þ � SUð2Þ. Yet
the field strength is smooth at B ¼ 0.

The BPS monopole.—Any deformation of the
Hamiltonian (8) that preserves the vacuum degeneracy
will again lead to a ’t Hooft–Polyakov monopole with a
different profile function fðBÞ. For example, we may add a
spin-blind potential to the Hamiltonian. Something special
happens for the potential given by

Vð�Þ ¼ 1
2mB2sin2�: (18)

For this choice, the Schrödinger equation simplifies. The
ground state energy is E0 ¼ 0, and it is a simple matter to
find the exact wave functions. They are given by (11), with

c ðcos�;BÞ ¼
�

Bm=@

2� sinhð2Bm=@Þ
�
1=2

eðBm=@Þ cos�: (19)

Equations (16) and (17) then tell us the exact Berry con-
nection for this system:

A � ¼ ����

B��
�

2B2

�
1� 2Bm=@

sinhð2Bm=@Þ
�
: (20)

Remarkably, this is exactly the profile function of the BPS
monopole satisfying (1). We could ask whether the adjoint-
valued Higgs field, �, also has a counterpart in our quan-
tum mechanics. Indeed, it is given by the suð2Þ valued
expectation value,

�ab ¼ 2m

@
hbj cos�jai: (21)

Using the exact ground state (19), and after performing the
gauge transformation to the rotationally covariant gauge
described above, we find the scalar field profile

� ¼ Bi�
i

B2

�
2Bm

@
coth

�
2Bm

@

�
� 1

�
; (22)

which is precisely the form of the Higgs field for the BPS
monopole solution of SUð2Þ Yang-Mills Higgs theory (1).

The magnetic field ~B plays the role of the spatial position,
while the analog of the Higgs expectation value is 2m=@.
Discussion.—The fact that one can write an equation,

such as (1), to describe the Berry connection is intriguing.
Typically, the only way to compute the Berry connection is
through the direct definition (7), but to do this one first
needs to compute the exact ground states as a function of
the parameters. If the Berry connection can be shown to
obey an equation—for example, of the form (1)—then one
can circumvent this step. In fact, this shortcut is known to
happen in supersymmetric quantum mechanics. This was
first shown some years ago [12–14] for quantum mechani-
cal models where the Berry connection was shown to obey
a formula known as the tt� equation. More recently, other
supersymmetric models have been exhibited for which it
can be shown that the Berry connection satisfies the
Bogomol’nyi equation (1), or generalizations thereof
[15,16]. Interestingly, the Berry phase of supersymmetric
quantum mechanics of this type has recently arisen in the
context of black hole microstates [17].
Although the model described in this Letter is not super-

symmetric, it may not surprise the reader to learn that, for
the specific potential (18), it may be shown to be the
truncation of a supersymmetric quantum mechanics [18].
The emergence of the Bogomol’nyi monopole equation
thus, once again, nods towards the existence of an under-
lying supersymmetry.
In this Letter we have introduced a simple-quantum

mechanical model of a particle moving on the sphere
which gives rise to a smooth, non-Abelian Berry connec-
tion taking the form of a ’t Hooft–Polyakov monopole.
However, the periodic form of the Hamiltonian (8) makes it
clear that it can also be given the interpretation of a particle
moving in a one-dimensional potential lattice with an
applied periodic magnetic field. Indeed, the exact ground
states (19) are of the required Bloch form with vanishing
crystal momentum. The monopole Berry phase derived in
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this Letter then describes the response of the Bloch states
to adiabatic changes in the magnetic field. It would be
interesting to study the effects of this smooth non-
Abelian Berry phase on the band structure of such 1d
crystals in more detail. Related systems, where the Berry
phase depends on the reciprocal lattice, were previously
studied in [19].
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