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We perform a direct test of the gauge-gravity duality associated with the system of N D0-branes in type

IIA superstring theory at finite temperature. Based on the fact that higher derivative corrections to the type

IIA supergravity action start at the order of �03, we derive the internal energy in expansion around infinite
’t Hooft coupling up to the subleading term with one unknown coefficient. The power of the subleading

term is shown to be nicely reproduced by the Monte Carlo data obtained nonperturbatively on the gauge

theory side at finite but large effective (dimensionless) ’t Hooft coupling constant. This suggests, in

particular, that the open strings attached to the D0-branes provide the microscopic origin of the black hole

thermodynamics of the dual geometry including �0 corrections. The coefficient of the subleading term

extracted from the fit to the Monte Carlo data provides a prediction for the gravity side.
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Introduction.—It is widely believed that large-N gauge
theory provides a nonperturbative description of super-
strings [1,2] and hence of quantum space-time. In pursuing
such a direction, it is useful to consider a particular setup
with a stack of N D-branes in the so-called decoupling
limit. After taking this limit there exists a parameter region,
in which the superstring theory in the bulk ten dimensions
reduces to a classical supergravity theory so that one only
has to consider a particular classical solution that describes
the N D-branes. On the other hand, the worldvolume
theory of the N D-branes is given by a supersymmetric
UðNÞ gauge theory. In the above parameter region, which
corresponds to taking the planar large-N limit with infinite
’t Hooft coupling, the gauge theory is conjectured to have a
dual description in terms of the supergravity solution [3].
Including �0 corrections on the gravity side corresponds to
including subleading terms with respect to the inverse
’t Hooft coupling constant on the gauge theory side.
Similarly, including string loop corrections corresponds
to including 1=N corrections. In fact the gauge theory is
well-defined for arbitrary coupling constant and N, and
thus it is expected to be a nonperturbative description of
superstrings in a certain curved background.

The system of D0-branes in type IIA superstring theory
provides a particularly simple example of the gauge-
gravity duality [4] since the gauge theory in this case lives
in one dimension, and hence it is nothing but matrix
quantum mechanics (MQM). It is also important due to
its connection [1] to M theory [5], which is expected to
emerge in the strong coupling limit of type IIA superstring
theory. Recently Monte Carlo studies of the supersymmet-
ric MQM have been performed [6] by using a nonlattice

regularization [7], which respects supersymmetry maxi-
mally. The internal energy calculated for a wide range of
the effective ’t Hooft coupling at finite temperature inter-
polates nicely the weak coupling behavior [8], and the
leading asymptotic behavior in the strong coupling limit
predicted from the black hole thermodynamics of the dual
geometry. Consistent results are obtained also from the
lattice approach [9]. See Refs. [10] for earlier works on
the same system based on the Gaussian expansion method.
In this Letter we perform a precision test of the above

gauge-gravity duality by considering �0 corrections to the
black hole thermodynamics. One of our main results is that
the internal energy E at temperature T is given as
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in the large-N limit with fixed � � T3, where c1 ’ 7:41.
The first term is known [4] from the supergravity analysis
[11]. The second term is the one we get from �0 correc-
tions, where C is calculable once the Oð�03Þ correction to
the supergravity action is obtained completely.
On the gauge theory side, � corresponds to the ’t Hooft

coupling constant. By comparingMonte Carlo data at large
but finite � with Eq. (1), we can test the gauge-gravity
duality including �0 corrections.
The dual black hole geometry.—The low-energy effec-

tive theory of type IIA superstring theory can be obtained
at the tree level as S ¼ Sð0Þ þ Sð1Þ þ � � � in the �0 expan-
sion. The type IIA supergravity action corresponds to the
leading term Sð0Þ, which is given by
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in the string frame, where we show the terms which depend
only on the metric g��, the dilaton � and the Ramond-

Ramond (R-R) 1-form potential A ¼ A�dx
� with the field

strength G ¼ dA. The coefficient � is given by ��1 ¼
16�GN ¼ ð2�Þ7�04g2s in terms of the ten-dimensional
Newton constant GN . In the last term of (3), we have
absorbed the tree-level dilaton factor into the normaliza-
tion of the R-R 1-form potential.

In type IIA supergravity, N D0-branes at finite tempera-
ture can be described by the nonextremal black 0-brane
solution. In the decoupling limit, we are interested in the
excitations of the D0-branes with fixed energy in the �0 !
0 limit. Correspondingly, we need to introduce a new
radial coordinateU ¼ r=�0 and take the near-horizon limit
of the above solution, which reads [4]

ds2 ¼ �0
�
� f

H1=2
dt2 þH1=2

f
dU2 þH1=2U2d�2

8

�
;

e� ¼ �0�ð3=2ÞH3=4; G ¼ �02H�2H0dt ^ dU;

(4)

where d�2
8 represents the line element of S8. The functions

HðUÞ and fðUÞ are given as

H ¼ 2415�5�

U7
; f ¼ 1�U7

0

U7
; (5)

where � is given by (2). The metric (4) represents a black
hole geometry with an event horizon located at U ¼ U0.

Black hole thermodynamics.—Given the black hole ge-
ometry, we can obtain thermodynamical quantities associ-
ated with it from the geometry at the horizon.

The Hawking temperature T is obtained by requiring
that a conical singularity does not appear at U ¼ U0 when
one makes the Wick rotation and compactifies the
Euclidean time � ¼ it to 	 ¼ T�1. This gives

T ¼ 1

4�
H�ð1=2Þf0jU¼U0

¼ c2�
1=3

�
U0

�1=3

�
5=2

; (6)

where c2 ¼ 7=ð24151=2�7=2Þ. Note that the extremal case
(T ¼ 0) corresponds to choosing U0 ¼ 0.

The Bekenstein-Hawking entropy S is evaluated by the
area A of the horizon in the Einstein frame as [11]

S

N2
¼ 1

N2

A
4GN
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�
T

�1=3

�
9=5

; (7)

where c3 ¼ 413=5152=5ð�=7Þ14=5 and we have used Eq. (6).
The internal energy E is determined by the first law of

thermodynamics dE ¼ TdS, and it gives the first term in
(1) with the coefficient c1 ¼ 9

14 c3 ¼ 7:407 . . . .

Let us recall the region of validity for this leading
behavior [4]. In order for the contributions from string
oscillations to be neglected, the curvature radius 
 of the
geometry (4) at U ¼ U0 should be much larger than the

string scale
ffiffiffiffiffi
�0p
, i.e.,
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which corresponds to T=�1=3 � 1 due to (6). In order for
the string loop effects to be neglected, the effective string
coupling at U ¼ U0 should be small enough, i.e.,

gse
� � 25153=4�23=4

N

�
�

U3
0

�
7=4 � 1; (9)

which corresponds to T=�1=3 � N�ð10=21Þ.
Higher derivative corrections.—When (8) is not met, we

need to consider�0 corrections to the type IIA supergravity
action Sð0Þ. They can be obtained by calculating tree-level

scattering amplitudes of the massless modes in type IIA
superstring theory.
Explicit calculations show that the two-point and three-

point amplitudes contribute only to Sð0Þ, and hence Sð1Þ ¼
Sð2Þ ¼ 0. On the other hand, the four-point amplitudes are

known to give nontrivial contributions to the effective
action at the order �03 [12].
From this fact alone, we can deduce the power of the

subleading term in Eq. (1). On dimensional grounds, the
actual expansion parameter in the �0 expansion is �0=
2,
which is the inverse of (8). Using (6), this translates to

ðT=�1=3Þ3=5. Since the black hole thermodynamics is ex-

pected to receive corrections of the order ð�0=
2Þ3 �
ðT=�1=3Þ9=5, we obtain 14

5 þ 9
5 ¼ 23

5 as the power of the

subleading term.
More on �0 corrections.—Here we present a more de-

tailed analysis of the �0 corrections, which yields the
power of the second term in Eq. (1). We hope that our
analysis will be useful also in calculating the coefficient C
once the complete form of Sð3Þ is obtained.
A typical term in Sð3Þ is given by [13]

S ð3Þ ¼ �
Z

d10x
ffiffiffiffiffiffiffi�g

p f�03e�2�R4 þ � � �g; (10)

where R4 stands for a scalar quantity obtained by con-
tracting indices of four Riemann tensors and multiplying
by some numerical factor. (Its explicit form can be found in
Ref. [14], for example.) Dilaton-dependent terms can be
obtained by replacing the Riemann tensor by the second
covariant derivative D2� of the dilaton field [15]. Other
possible terms can be written symbolically as �03R3G2,
�03R2ðDGÞ2 and so on [16,17].
The equations of motion are derived by taking the

variation of the effective action S ¼ Sð0Þ þ Sð3Þ with re-

spect to �, for instance, as

0 ¼ Rþ 4@��@��� 2e2�D�@
�e�2� þ �03R4 þ � � � ;

(11)

and similarly for g�� and A�. Here we assume that the

solution to these equations is given by the same form (4)
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with the functions HðUÞ and fðUÞ replaced by

H ¼ 2415�5�

U7
ð1þHð3ÞÞ; f ¼ 1�U7

0

U7
þ fð3Þ: (12)

Using this ansatz, Eq. (11) becomes
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(13)

The last term is obtained by substituting the leading terms
of the solution into the subleading terms in (11). The

explicit form of hðU0

U Þ can be obtained once Sð3Þ is given.
It is important that this last term has an extra factor of

��ð3=2Þ compared with the other terms, which is under-
standable since the effective expansion parameter is given

by �0=
2 � ðU3
0=�Þ1=2 as mentioned above. Note, for in-

stance, that the fourth term in (11) is estimated as �03R4 �
�03 � ð�0�1��ð1=2ÞÞ4 ¼ �0�1��2 using R� �0�1��ð1=2Þ
deduced from (8). (We have also checked by explicit
calculations that this kind of estimate is true for all possible
subleading terms.) Since the other equations of motion
have the same structure, we conclude that Hð3Þ and fð3Þ
can be written as

Hð3Þ ¼
�
U0

�1=3

�
9=2

~H

�
U0

U

�
; fð3Þ ¼

�
U0

�1=3

�
9=2

~f

�
U0

U

�
(14)

with some functions ~HðU0

U Þ and ~fðU0

U Þ.
The location of the horizonUH is shifted fromU0 due to

the �0 corrections, and it should be determined from
fðUHÞ ¼ 0, which reads

U0

UH

¼ 1þ
~fð1Þ
7

�
UH

�1=3

�
9=2

: (15)

The Hawking temperature is obtained as

T ¼ 1

4�
H�ð1=2Þf0jU¼UH

¼ c2�
1=3

�
UH

�1=3

�
5=2

�
1þ c4

�
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�1=3
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9=2

�
; (16)

where c4 ¼ ~fð1Þ � 1
7
~f0ð1Þ � 1

2
~Hð1Þ. By solving this equa-

tion for UH iteratively, we obtain
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¼

�
T

c2�
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�
2=5

�
1� 2

5
c4

�
T

c2�
1=3

�
9=5

�
: (17)

The Bekenstein-Hawking entropy formula is no longer
valid in the presence of higher derivative terms, and we
need to use the Wald formula [18,19]. For spherically
symmetric black holes, it reads

S ¼ �8�
Z

d�8

�S

�RtUtU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gttgUU

p jU¼UH
; (18)

where the variation of the action should be taken by
regarding the Riemann tensor as an independent variable.
Explicit calculations yield

�S

�RtUtU

¼
ffiffiffiffiffiffiffi�g

p
e�2�gttgUU

32�GN

f1þ �03ðR3 þ � � �Þg; (19)

where we define R3 � 2gttgUUð�R4=�RtUtUÞ. Inserting
the leading supergravity solution to the Oð�03Þ terms in

Eq. (19), we obtain �03ðR3 þ � � �Þ ¼ sðU0

U ÞðU=�1=3Þ9=2,
similarly to the argument that led to (14). Therefore the
entropy (18) is evaluated as

S
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; (20)

where c5 ¼ � 9
5 c4 þ sð1Þ and the horizon area ~A includes

�0 corrections through Eqs. (14) and (15). The internal

energy is obtained as (1), where C ¼ � 28
23 c1c5ðc2Þ�ð9=5Þ.

The worldvolume theory.—The worldvolume theory of
N D0-branes is given by the UðNÞ supersymmetric MQM
defined by the action

SMQM ¼ N

�

Z 	

0
dt tr

�
1

2
ðDtXiÞ2 � 1

4
½Xi; Xj�2 þ 1

2
c �Dtc �

� 1

2
c �ð�iÞ�	½Xi; c 	�

�
; (21)

where Dt ¼ @t � i½AðtÞ; �� represents the covariant deriva-
tive with the gauge field AðtÞ being an N � N Hermitian
matrix. The model describes the open string degrees of
freedom attached to the branes, which are decoupled from
the bulk degrees of freedom in the decoupling limit �0 ! 0
with fixed �. Note that N and � can be arbitrary for this
statement.
Monte Carlo results.—In simulating the model (21), we

fix the gauge by the static diagonal gauge AðtÞ ¼
1
	 diagð�1; � � � ; �NÞ, where ��< �a 	 �, and introduce

a UV cutoff� as Xab
i ðtÞ ¼ P

�
n¼��

~Xab
in e

2�int=	. Integration

over the fermionic matrices yields a complex Pfaffian,
which is replaced by its absolute value following the argu-
ment in Ref. [20] based on the large-N factorization.
The effective coupling constant is given by �eff � �=T3,

and we set � ¼ 1 in actual simulations without loss of

generality. In Fig. 1 we plot 7:41T14=5 � 1
N2 E against T in

the log-log scale. Indeed the plot reveals a clear power-law
behavior of the subleading term with the power 23

5 ¼ 4:6 as

predicted in Eq. (1). The data points for � ¼ 6 show small
discrepancies at T & 0:55, which can be understood as
finite � effects by comparing them with the data points
for � ¼ 8. Figure 2 shows a linear plot of the energy as a
function of T. Fitting the data within 0:5 	 T 	 0:7 (with

largest� at each T) to 1
N2 E ¼ 7:41T14=5 � CTp, we obtain

p ¼ 4:58ð3Þ and C ¼ 5:55ð7Þ. If we instead make a one-
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parameter fit with p ¼ 4:6 fixed, we obtain C ¼ 5:58ð1Þ.
This value, in turn, provides a prediction for the �0 correc-
tions on the gravity side.

Summary.—We have discussed the �0 corrections to the
black hole thermodynamics, which enable us to determine
the power of the subleading term in (1). This power is then
found to be reproduced precisely by Monte Carlo data in
gauge theory. Let us emphasize that the subleading term is
crucial for the precision test of the gauge-gravity duality. It
is intriguing that our results in gauge theory can tell us the
absence of Oð�0Þ and Oð�02Þ corrections to the supergrav-
ity action.

Recently [20], Monte Carlo data for the Wilson loop
were also shown to reproduce a prediction obtained by
estimating the disk amplitude in the dual geometry. Unlike

the present case, �0 corrections to that quantity start at
Oð�0Þ due to the fluctuation of the string world sheet and its
coupling to the background dilaton field.
While it is certainly motivated to obtain the coefficientC

of the subleading term from gravity, our results already
provide a strong evidence that the gauge-gravity duality
holds including �0 corrections. This, in particular, implies
that we can understand the microscopic origin of the black
hole thermodynamics including �0 corrections in terms of
the open strings attached to the D0-branes.
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leading term 7:41T14=5 is plotted against the temperature in the
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straight line with the slope 4.6 predicted from the �0 corrections
on the gravity side.
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